Introduction to Trigonmetry

Study Support USQ Library

Study Support
USQ Library

This presentation will cover:

- Trigonometric ratios
- Angle units
- Other trigonometric ratios

Recall: Pythagoras' Theorem:

$$
c^{2}=a^{2}+b^{2}
$$

Note that:

- the sum of angles in any triangle is 180°;
- side $A C$ is adjacent to angle θ;
- side $B C$ is opposite to angle θ;
- side $A B$, the hypotenuse, is opposite the right-angle.

Ratios are only defined for a right-angle triangle.
sine θ or $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$,
cosine θ or $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$,
tangent θ or $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{\sin \theta}{\cos \theta}$.

Angles are measured in:

- Degrees: Amount of turning so that a circle has 360°
- Radians: Ratio of circular arc length to radius
- Grads: A metric degree, where 100 grads equals 90 degrees. It is sometimes referred to as a 'grade' or a 'gon'. Not used much in Australia.

Always check your calculator before completing trigonometric calculations

Example 1

There are more ratios which can be used in Trigonometry (remember that ratios are only defined for right-angle triangles).

$$
\begin{aligned}
\operatorname{secant} \theta \text { or } \sec \theta & =\frac{1}{\cos \theta} \\
& =\frac{\text { hypotenuse }}{\text { adjacent }} \\
\text { cosecant } \theta \text { or } \operatorname{cosec} \theta & =\frac{1}{\sin \theta} \\
& =\frac{\text { hypotenuse }}{\text { opposite }} \\
\text { cotangent } \theta \text { or } \cot \theta & =\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta} \\
& =\frac{\text { adjacent }}{\text { opposite }}
\end{aligned}
$$

Find all the lengths of the given triangle. (Give answer to 2 decimal places.)

$$
\begin{aligned}
\sin C & =\frac{\text { opposite }}{\text { hypothenuse }} \\
\sin 30^{\circ} & =\frac{c}{10} \\
10 \times \sin 30^{\circ} & =c \\
c & =10 \times \sin 30^{\circ} \\
c & =5 .
\end{aligned}
$$

Find all the lengths of the given triangle. (Give answer to 2 decimal places.)

Find all the sides and angles of the given triangle. (Give answer to 2 decimal places.)

Firstly find the angle θ :

$$
\begin{aligned}
\sin \theta & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin \theta & =\frac{5}{7} \\
\theta & =\sin ^{-1}\left(\frac{5}{7}\right) \\
\theta & \approx 45.57^{\circ} .
\end{aligned}
$$

Note: $\sin ^{-1}\left(\frac{5}{7}\right)$ means the angle whose sine is $\frac{5}{7}$.

Example 2 (continued)

Secondly, find the angle α :

To find the angle $\angle C A B$, (or α), we use the fact that all angles in a triangle add up to 180°.
Recall that $\angle A B C$ is a right angle, which means that $\angle A B C=90^{\circ}$.
Therefore,

$$
\alpha \approx 180^{\circ}-90^{\circ}-45.58^{\circ}=44.42^{\circ} .
$$

USQ

Example 2 (continued)

To find side a, we could use Pythagoras' Theorem:

$$
\begin{aligned}
a^{2}+5^{2} & =7^{2} \\
a^{2} & =7^{2}-5^{2} \\
& =24 \\
a & =\sqrt{24} \approx 4.90
\end{aligned}
$$

Further help
usq.edu.au/library

