

Study Support
USQ Library

Exponential equations

USQ

Exponential equations: Growth

USQ
Your graph should look something like the one below.
Let us look at the number of ancestors a person has.

We could continue this indefinitely, but let us instead look at this information in a table.

$$
\begin{array}{r|ccccccccc}
\text { Generations back }(x) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \text { Number of ancestors }(y) & 1 & 2 & 4 & 8 & 16 & 32 & 64 & 128 & 256
\end{array}
$$

Exponential Graphs

Study Support

USQ LIbrary

- The equation to this curve is $y=2^{x}$. We call this type of graph an exponential growth curve and often use it in population growth studies.
- The name refers to the position of the x in the exponent of the equation.
- As the number of generations back (x) increases, the number of ancestors (y) becomes greater and greater. The curve grows steeper and steeper.

Exponential growth graph:

Another example

- Consider the equation to the curve $y=2^{-x}$
- We call this type of graph an exponential decay curve
- This time as x takes on more positive values, the curve comes closer and closer to the x-axis but never touches it.
- Exponential decay curves occur in such areas as science when we talk about radio active decay and in business when we talk about depreciation.

Exponential decay Graph

USQ

Further help usq.edu.au/library

