Inequalities

Study Support
USQ Library

Inequalities

Inequalities are central to the definition of all limiting processes and are essential to many professions. When faced with a real world problem to translate to algebraic language, not all will result in simple expressions or equations.
Consider the following.
The total cost of landscaping a garden includes the cost of plants (call it P) and the cost of the soil and mulch (call it S). The owner declares that the total cost of the job should not be greater than $\$ 2500$. Express this relationship in algebraic form.

There is no way that this would be an equation. But rather this would be an inequation or an inequality. We would write it as $P+S \leq 2500$, and say: The sum of the cost of plants and the cost of soil and mulch is less than or equal to two thousand and five hundred dollars.

Study Support
USQ Library

Recall from your previous experiences the meaning of the following signs:
$<$ Less than
\leq Less than or equal to
$>$ Greater than
\geq Greater than or equal to

- We can graph inequations to help visualise their properties and solution.
- The inequality $x>2$ is read as ' x is greater than two'. We can represent this inequation on a real number line

- Another example is: $1<x<3$, is read as ' x is greater than 1 but less than or equal to 3^{\prime}.

Example

Checking the Solution

To check our solution we could try numbers either side of $\frac{5}{2}$ in the original inequality.
Try a number less than $\frac{5}{2}$, say $x=2$.
Substitute this into the original inequality:

$$
\mathrm{LHS}=2 \times 2-1=3,
$$

which indeed is less than 4 and the inequality is true.
Next try a number greater than $\frac{5}{2}$, say $x=3$
Substitute this into the original inequality:

$$
\text { LHS }=2 \times 3-1=5,
$$

which is greater than 4 . The inequality is not true for this value of x, which is what our solution predicted.

This procedure does not ensure that we are correct, but it does give an opportunity to pick up some errors.

Another example

USQ
Exercises
Solve the following inequations for x.
1.

$$
\begin{aligned}
1-2 x & <x+2, & & \\
1-2 x-x & <x+2-x, & & \begin{array}{l}
\text { To group the } x^{\prime} \text { 's on the LHS subtract } x \text { from both } \\
\text { sides. }
\end{array} \\
1-3 x & <2, & & \\
1-3 x-1 & <2-1, & & \begin{array}{l}
\text { To group the constants on the RHS subtract } 1 \text { from } \\
\text { both sides. }
\end{array} \\
-3 x & <1, & & \text { To isolate } x \text { on the LHS divide both sides by }-3 . \\
\frac{-3 x}{-3} & >\frac{1}{-3}, & & \text { When you divide an inequation by a negative } \\
x & >-\frac{1}{3}, & & \begin{array}{l}
\text { Wumber you must reverse the inequality sign. } \\
\text { number }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\frac{3 x}{5}-\frac{2 x}{3} & >-7 \\
15 \times \frac{3 x}{5}-15 \times \frac{2 x}{3} & >15 \times-7 \\
3 \times 3 x-5 \times 2 x & >-105 \\
9 x-10 x & >-105 \\
-x & >-105 \\
-1 \times-x & <-1 \times-105 \\
x & <105
\end{aligned}
$$

$$
\begin{aligned}
3 x-2(2 x-7) & \leq 2(3+x)-4 \\
3 x-4 x+14 & \leq 6+2 x-4 \\
-x+14 & \leq 2+2 x \\
-x+x+14 & \leq 2+2 x+x \\
14 & \leq 2+3 x \\
14-2 & \leq 2-2+3 x \\
12 & \leq 3 x \\
\frac{12}{3} & \leq \frac{3 x}{3} \\
4 & \leq x \\
r & >4
\end{aligned}
$$

13

Answers Q5

USQ

Further help usq.edu.au/library

