Algebra: Solving Simultaneous Equations:

Overview

This presentation will cover the use of the substitution method to solve a system of two equations with two unknown variables

Substitution Method

In this method, we substitute one variable from one equation into the other. The steps involved are:

1. Using either of the equations, express one variable in terms of the other.
2. This expression is then substituted into the other equation to form an equation in one variable only.
3. Solve this equation to find the value of one of the variables.
4. Substitute the value of this variable into the equation formed in the first step to find the value of the other variable.
5. Check your answer in both of the original equations.

Example

Let us follow the steps through in an example.

$$
\begin{align*}
& 2 x+5 y=6 \tag{1}\\
& 3 x+2 y=-2 \tag{2}
\end{align*}
$$

Step 2 and 3: Substitute this into
Equation (2) and solve for the single variable

$$
\begin{aligned}
3 x+2 y & =-2, \\
3\left(\frac{6-5 y}{2}\right)+2 y & =-2, \\
3(6-5 y)+4 y & =-4, \\
18-15 y+4 y & =-4, \\
-11 y & =-4-18, \\
-11 y & =-22, \\
y & =2
\end{aligned}
$$

Step 1: Express one variable in terms of the other

Using Equation (1), rearrange to make x the subject.

$$
\begin{aligned}
2 x+5 y & =6, \\
2 x & =6-5 y, \\
x & =\frac{6-5 y}{2} .
\end{aligned}
$$

Note: you could have also made y the subject, or used Equation (2) to make either x or y the subject. It is always good to see which equation will be the simplest to rearrange.

Step 4: Substitute this value into the other equation.

$$
\begin{aligned}
2 x+5 y & =6, \\
2 x+5 \times 2 & =6, \\
2 x & =6-10, \\
2 x & =-4, \\
x & =-2 .
\end{aligned}
$$

From our calculations our answers are $x=-2$ and $y=2$.

Step 5: Check the answer in both of the original equations.

Check: $x=-2$ and $y=2$.

Equation (1):
$2 x+5 y=6$,

$$
\begin{aligned}
& \text { Equation (2): } \\
& \qquad 3 x+2 y=-2,
\end{aligned}
$$

$$
\begin{aligned}
\text { LHS } & =2 \times-2+5 \times 2 & \text { LHS } & =3 \times-2+2 \times 2 \\
& =6 & & =-2 \\
& =\text { RHS } & & =\text { RHS } .
\end{aligned}
$$

Both values substitute correctly into both equations so the answer must be correct.

Solution:

Firstly, draw a diagram.

$$
\text { Area }=6 \mathrm{~m}^{2}
$$ Perimeter $=10 \mathrm{~m}$

Secondly, define the unknowns:
dimensions: length $=x$, width $=y$.

$$
x=?, \quad y=?
$$

Worded example (non-linear equations)

We may need to find the dimensions of a rectangle (perhaps a field or a room) whose area is 6 square units and perimeter is 10 units.

Solution (continued)

Let's set up the equations.
Area must be 6 .

$$
x y=6 .
$$

Perimeter must be 10 .

$$
2 x+2 y=10 .
$$

The resulting equations can only be solved by the substitution method.

$$
\begin{align*}
x y & =6 \tag{3}\\
2 x+2 y & =10 . \tag{4}
\end{align*}
$$

Solution (continued)

Rearrange one of the equations to express one of the variables in terms of the other.
From Equation (3),

$$
\begin{equation*}
y=\frac{6}{x} \tag{5}
\end{equation*}
$$

Solution (continued)

Use this equation to find the first variable.
Substitute these values into Equation (5).

$$
\begin{aligned}
& y=\frac{6}{2}=3, \text { or } \\
& y=\frac{6}{3}=2 .
\end{aligned}
$$

Thus the two solutions are $(x=2, y=3)$, or $(x=3, y=2)$.

Solution (continued)

Substitute this expression into the other equation to form an equation in one variable.
Substituting into Equation (4),

$$
2 x+2 \times \frac{6}{x}=10 .
$$

Solve this equation:

$$
\begin{aligned}
2 x^{2}+12 & =10 x, \\
2 x^{2}-10 x+12 & =0, \\
x^{2}-5 x+6 & =0, \\
(x-2)(x-3) & =0, \\
x=2, & \text { or } x=3 .
\end{aligned}
$$

Solution (continued)

Check this solution.
In Equation (3) LHS $=2 \times 3=6=$ RHS
In Equation (4) LHS $=2 \times 2+2 \times 3=10=$ RHS.
As an exercise you should check the alternative solution $x=3$, and $y=2$.

Exercise

Solve the following sets of simultaneous equations.
1.

$$
\begin{aligned}
3 x-y & =12 \\
x+y & =8
\end{aligned}
$$

2.

$$
\begin{aligned}
3 x-4 y & =5, \\
5 x-12 y & =3 .
\end{aligned}
$$

Solution: Question 1 (continued)

Substituting Equation (8) into Equation (6) gives:

$$
\begin{align*}
3 x-y & =12 \\
3(8-y)-y & =12 \\
24-3 y-y & =12 \\
24-4 y & =12 . \\
-4 y & =12-24 \\
-4 y & =-12 \\
y & =\frac{-12}{-4} \\
y & =3 . \tag{9}
\end{align*}
$$

Solution: Question 1

$$
\begin{align*}
3 x-y & =12 \tag{6}\\
x+y & =8 . \tag{7}
\end{align*}
$$

Rearranging Equation (7):

$$
\begin{equation*}
x=8-y \tag{8}
\end{equation*}
$$

Solution: Question 1 (continued)

Substituting Equation (9) into Equation (8) gives:

$$
\begin{aligned}
x & =8-y \\
& =8-3 \\
& =5 .
\end{aligned}
$$

Therefore the solution is $x=5$ and $y=3$.

Solution: Question 1 (continued)

Solution: Question 2

$$
\begin{align*}
3 x-4 y & =5 \tag{10}\\
5 x-12 y & =3 . \tag{11}
\end{align*}
$$

Rearranging Equation (10) gives:

$$
\begin{align*}
3 x-4 y & =5 \\
3 x & =5+4 y \\
3 x-5 & =4 y \\
y & =\frac{3 x-5}{4} . \tag{12}
\end{align*}
$$

Both values substitute correctly into both equations so the answer must be correct.

Solution: Question 2 (continued)

Substituting Equation (12) into Equation (11) gives:

$$
\begin{align*}
5 x-12 y & =3 \\
5 x-12\left(\frac{3 x-5}{4}\right) & =3 \\
5 x-3(3 x-5) & =3 \\
5 x-9 x+15 & =3 \\
-4 x & =3-15 \\
-4 x & =-12 \\
x & =3 . \tag{13}
\end{align*}
$$

Solution: Question 2 (continued)

Substituting Equation (13) into Equation (12) gives:

$$
\begin{aligned}
y & =\frac{3 x-5}{4} \\
& =\frac{3 \times 3-5}{4} \\
& =1 .
\end{aligned}
$$

Therefore the solution is $x=3$ and $y=1$.

Solution: Question 2 (continued)

Summary

Check: $x=3$ and $y=1$

```
Equation (10):
Equation (11):
    \(3 x-4 y=5\),
\[
\begin{aligned}
\text { LHS } & =3 \times 3-4 \times 1 & \text { LHS } & =5 \times 3-12 \times 1 \\
& =5 & & =3 \\
& =\text { RHS. } & & =\text { RHS } .
\end{aligned}
\]
```

Both values substitute correctly into both equations so the answer must be correct.

