

Study Support USQ Library

- read the problem twice;
- read the problem out aloud to yourself, if possible;
- ask yourself four questions:
- What is the problem asking me?
- What facts are given in the problem?
- Are there any special conditions?
- Is any information irrelevant?
- draw a diagram or picture, if appropriate;
- break the problem down into parts;
- define the variables;
- look for connections between variables;
- write the connection out in words, then write them out as an algebraic relationship.

Introduction to Algebra

Study Support

USQ Library

Express the following relationships as formulas.

1. The grevillea is half the height of the palm tree.
2. The adult weighs three times as much as the child.
3. The perimeter of a square is four times the length of one side.
4. The house is 15 metres longer than it is wide.

Relationships as formulas: Answers

You may have different letters to those given here, but the formula should look the same and you should have defined the variables clearly and fully.

1. The grevillea was half the height of the palm tree.

$$
G=\frac{1}{2} P
$$

where G represents the height of the grevillea, and P represents the height of the palm tree.
2. The adult weighed three times as much as the child.

$$
\begin{aligned}
& A=3 \times C, \\
& A=3 C,
\end{aligned}
$$

where A represents the weight of the adult, and C represents the weight of the child.

Variables and expressions

USQ

Terms used in Algebra:

- A variable is a term that is used to indicate that that symbol may take various values.
- Usually a letter of the alphabet is used to represent a variable.
- Sometimes we call these letters pronumerals because they act as a numeral
- It is most important that the meaning of variables is understood
- An algebraic expression might involve variables, numbers and symbols (+, $-, \infty, \div, \sqrt{ }, \ldots)$ but no equals sign.
- An equation contains an equals sign $(=)$ and indicates that two expressions are equal. Formulas are examples of equations.

3. The perimeter of a square is four times the length of one side.

$$
\begin{aligned}
P & =4 \times s \\
P & =4 s
\end{aligned}
$$

where P represents the perimeter, and s represents the length of one side.
4. The house was 15 metres longer than it was wide.

$$
L=W+15
$$

where L represents the length of the house, in metres, and W represents the width of the house, in metres.

Example of an Expression

Write an expression to represent the following situation and then simplify the expression:

Two times a number plus five times the same number.
We must first define the variable. Let the unknown number be x. Then,

$$
2 \times x+5 \times x
$$

becomes the required expression.
Recall that it is not necessary to include the multiplication sign, so we could rewrite this expression as

$$
2 x+5 x
$$

- The symbols,,$+- \times, \div$ have exactly the same meaning in algebra as in arithmetic.
- Like terms are those terms which contain the same power of the same variable.

Sort the following into groups of like terms:

$$
\begin{gathered}
x, 5 a, 7 a^{2}, 6 x^{2}, 7 x, 9 a, 17 x, 5 x^{2}, 6 a^{2} \\
8 x, 9 x^{2}, 12 a,-4 x,-11 x^{2},-3 a,-2 x, 2 a^{2}
\end{gathered}
$$

- $x, 7 x, 17 x, 8 x,-4 x,-2 x$
- $5 a, 9 a, 12 a,-3 a$
- $7 a^{2}, 6 a^{2}, 2 a^{2}$ and
- $6 x^{2}, 5 x^{2}, 9 x^{2},-11 x^{2}$

Example

1. $3 x+2 x$

Are $3 x$ and $2 x$ like terms? Yes, because they have the same power of the same variable (x). Therefore,

$$
3 x+2 x=(3+2) x
$$

$$
=5 x
$$

2. $5 a^{2}+9 a-3 a^{2}-a+1$

See that the like terms have an a^{2} group, an a group and a constant group, so when collecting these together we get

$$
5 a^{2}-3 a^{2}+9 a-a+1=2 a^{2}+8 a+1
$$

3. $-3 x+4 y+x y+8 x-y$

See that the like terms have a x group, a y group and an $x y$ group, so when collecting these together we get

USQ

Remember:

1. You can only add or subtract like terms.
2. If a term is just x, x^{2}, etc., then the coefficient is one.
3. Take care when regrouping terms with negatives.
