

Overview

What are Logarithms?

Now calculate:

10^{2}	$=100$	$\log _{10} 100$	$=2$
10^{3}	$=1000$	$\log _{10} 1000$	$=3$
10^{4}	$=10000$	$\log _{10} 10000$	$=4$
10^{5}	$=100000$	$\log _{10} 100000$	$=5$

Notice the power you are raising the 10 to is same as the answer when we take the logarithm.
Therefore, logarithms are powers in another form.
For example,

$$
\log _{10} 2.36 \approx 0.3729 \quad \longrightarrow \quad 10^{0.3729} \approx 2.36
$$

$$
\left.\left.\begin{array}{clc}
\text { Exponential form } & & \begin{array}{c}
\text { Logarithmic form } \\
2^{5}=32
\end{array} \\
\log _{2} 32=5
\end{array}\right] \begin{array}{l}
\log _{10} 1=0
\end{array}\right] \begin{array}{ccc}
\log _{4} 0.25=-1 \\
4^{-1}=\frac{1}{4}=0.25 & \longrightarrow & \log _{8} 2=\frac{1}{3} \\
8^{\frac{1}{3}}=2 & \longrightarrow & \log _{e} 7.389=\ln 7.389 \\
e^{2} \approx 7.389 & \longrightarrow & \log _{b} y=x
\end{array}
$$

Exponential functions and logarithmic functions are inverse functions, meaning that they undo each other.

Example 1

Evaluate the logarithm of 3×10^{-9}
We have not been explicitly told which logarithm, so in this case it would be advisable to choose to take the logarithm to the base of 10 to see how the logarithms laws work.

$$
\begin{aligned}
& \log \left(3 \times 10^{-9}\right) \\
= & \log 3+\log 10^{-9} \quad \text { Using the Law: } \log (x \times y)=\log x+\log y \\
= & \log 3+(-9) \log 10 \quad \text { Using the Law: } \log \left(x^{y}\right)=y \log x \\
= & \log 3+(-9) \quad \text { Using the Law: } \log _{b}(b)=1 \\
\approx & 0.47712-9 \approx-8.52 .
\end{aligned}
$$

We could also just evaluate this on out calculator: $\log \left(3 \times 10^{-9}\right) \approx-8.52$.

Solve for x in the following equations:

1. $\log _{10} x=1$

$$
\log _{10} x=1 \quad 10^{1}=x \quad x=10
$$

2. $\log _{10} x=6.80$

$$
\log _{10} x=6.80 \quad 10^{6.80}=x \quad x \approx 6309573
$$

3. $\log _{10} x=-0.8$

$$
\log _{10} x=-0.8 \quad \quad 10^{-0.8}=x \quad x \approx 0.158
$$

	$\log _{3} 81+\log _{3}\left(\frac{1}{9}\right)$	check that the bases are the same,
$=$	$\log _{3}\left(81 \times \frac{1}{9}\right)$	using the law: $\log (x \times y)=\log x+\log y$,
$=$	$\log _{3} 9$	
$=$	$\log _{3}\left(3^{2}\right)$	
$=$	$2 \times \log _{3} 3$	using the law: $\log \left(x^{y}\right)=y \log x$,
$=$	2×1	using the law: $\log _{a} a=1$,
$=$	2.	

$=\log _{3}\left(81 \times \frac{1}{9}\right)$ using the law: $\log _{a} a=1$,
$\ln 25+2 \ln 0.2$
$=\ln 25+\ln 0.2^{2}$
$=\ln \left(25 \times 0.2^{2}\right)$
$=\ln 1$
$=0$

Check that the logarithms have the same base using the law: $n \log a=\log a^{n}$, using the law: $\log a+\log b=\log (a \times b)$,
using the law: $\log _{a} 1=0$.

Further help usq.edu.au/library

