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Introduction

Do you often ride in taxis? Even if you don’t I’m sure you have respect for the drivers who are 
able to drive around the city with ease getting you to your destination by the quickest route 
(there must be some who do this!). Taxi drivers should appreciate this module! John Paulos, in 
his book Beyond Numeracy alluded to this connection between analytical geometry and taxi 
drivers thus:

As is the case with many fundamental discoveries, the insight that led to analytical 
geometry is in retrospect very simple and obvious to all, and to cabdrivers in particular. In 
taxi terms this insight can be phrased: Every intersection corresponds to a street and an 
avenue, and every street and avenue corresponds to an intersection. A more mathematical 
rendering states that every point corresponds to an ordered pair of numbers, and every 
ordered pair of numbers corresponds to a point. (p. 10)

So far in this course, you have studied families of functions. In this module we will look at 
mathematics from a different perspective – a geometrical one. Geometry has a very important 
role in the history of mathematics. Ancient Greek mathematicians were well advanced in 
mathematical thinking, but they lacked the algebraic tools to develop mathematics, so relied 
on geometry to solve problems and develop concepts. These concepts we still use today. It was 
not until the 17th Century that mathematicians Pierre Fermat (who was a lawyer as well) and 
Rene Descartes (who was a philosopher as well) made a breakthrough that seems so logical to 
us today. They attached numbers to geometrical objects. They did this through the coordinate 
system. We know this today as the Cartesian coordinate system and you have used this system 
in your studies so far. But there are other systems which can be used more effectively in 
different circumstances.

We will now look at different systems for describing points and curves. In this module, as in 
previous modules, we will be using Graphmatica to develop concepts, but again it is important 
for you to be able to see what the figures will be like before using Graphmatica. To do this you 
need a thorough understanding of the relationship between the parameters in an equation and 
their shapes; this module will help develop these skills.

In particular, on completion of this module you should be able to:

• identify points using rectangular coordinates, polar coordinates, and vectors

• change from polar to rectangular coordinates and vice-versa

• demonstrate an understanding of a vector

• express vectors in terms of a column matrix, and i and j

• identify characteristics of straight lines and segments including equations, length and mid-
point

• identify characteristics of standard curves (polynomial, exponential, logarithmic, circular, 
and hyperbolas)

• examine transformations of linear, parabolic, exponential, logarithmic, circular curves and 
rectangular hyperbolas

• examine other curves and investigate the importance of parameters in their equations.
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5.1 Describing points in space

Did you ever see the movie Stargate? In the movie, the code to unlock the Stargate was broken 
by understanding how to position a point in space. There are a number of ways to do this. To 
position a point in space we need some reference surface and a method that refers to it. There 
are a number of ways to position points in space. We will only investigate some of these and 
only look at 2 dimensions. In this section, we will revisit the rectangular coordinate system 
(The Cartesian Plane), look at the polar coordinate system and take a brief look at vectors. 
There are other systems of coordinates around including three dimensional systems, and you 
may come across them, especially if you study surveying (e.g. latitude and longitude system, 
the World Geodetic System or the Global Positioning System).

5.1.1 Rectangular coordinates

Suppose we are in a city and we call a taxi. The taxi driver may have to resort to a street 
directory to locate our street in relation to the current position. The driver might say I have to 
go 4 streets east then 2 streets north to get to our location, if the streets are in a rectangular 
grid. The Cartesian coordinate system is sometimes referred to as the rectangular coordinate 
system, since points are laid out in a rectangular grid. Recall from other studies that we use the 
origin (0,0) as our starting point and the two perpendicular lines, the x and y axes, as our frame 
of reference for every point. Each point is assigned two numbers, called an ordered pair.
So in the diagram below the point P is assigned the ordered pair (4, 2). The 4 is often called the 
x-coordinate and 2 the y-coordinate. The point Q is assigned ( 3,  2). If we combine an 
infinite number of these points together in a certain pattern we can draw lines or curves. Thus 
the points (1, 1), (2, 2), (10, 10) etc. lie on a straight line and the relationship between the 
coordinates can be expressed algebraically as y = x. In following sections we will look at lines 
and curves in more detail.

Figure 5.1:  Example of the cartesian coordinate system

5.1.2 Polar coordinates

Back in our taxi, if we said to the driver ‘Look, I don’t know how to get there but, as the crow 
flies, it’s about 5 kilometres in that direction (pointing about 30! north of east)’. Given your 
information, the taxi driver could identify that position using his street directory. The 
coordinates that give a magnitude and direction from a starting position are called polar 
coordinates.
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If our starting position is O and the final position is P then we now have two pieces of 
information with regard to the point P:

• the distance from the origin is 5, and

• the angle which is 30! north of east.

So our frame of reference is now a point (the origin) and a directed line (in this case the line 
pointing east) i.e., a given distance from a point and a given angle from the directed line.

Figure 5.2:  Point in polar coordinates

With these two pieces of information alone i.e. the distance and the angle, we can position the 
point P as in figure 5.2. If we define our point P as (5, 30!), these are called the polar 
coordinates of the point P, the first coordinate being the distance from the origin and the 
second being the angle moving anticlockwise from the directed line OX (called the polar 
axis). This idea was first suggested by Newton in about 1671 and is now used extensively in 
surveying and engineering.

You can also plot points on special polar graph paper, as seen in figure 5.3.

Figure 5.3:  Point on polar coordinate graph paper

If the point P had the rectangular coordinates (x, y) and the distance from the origin was r with 
an angle of , then the point in polar coordinates would be (r, ). With rectangular 
coordinates, each point is uniquely defined by the ordered pair (x, y). This is not true for polar 
coordinates. The point (r, ) can be represented by (r, ) or any other angle that is 
coterminal with it (as we go round and round the circle). We could also represent the point in 
terms of negative angles. Point P in figure 5.3 could be (5,  330!).

P (5, 30!)
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Figure 5.4:  Point P with coterminal angles

For example, in figure 5.4 the point P could be shown as (2, 30!), (2, 390!), (2,  330!) etc.

Activity 5.1

1. Estimate the polar coordinates of M, N, Q and P in the following graph. Give 
3 different possibilities for each: a first revolution answer; an answer with a 
coterminal angle and an answer with a negative angle.

2. Use a polar grid to plot the points R(3, 60!), S(4, 150!) and T(1,  90!).

But how do we interpret these polar coordinates in terms of the rectangular coordinates we 
have used so far?

The relationship between the two coordinate systems can be found using trigonometry.

P(2, 30°)o r( 2, 390°) or (2, −330°)

P

Q

N

M
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In figure 5.5, P is the point (4, 3). Using Pythagoras’ theorem we can find the length OP as 

5 units ( ). If we label the angle between the x axis and the line OP as , then

In polar coordinates the point now becomes P(5, 37!). 

Let’s now generalise this. In figure 5.6, P is the point (x, y). Using Pythagoras’ theorem, we 

can find the length OP as r ( ). If we label the angle between the x axis and the line 

OP as , then from the figure 5.6 can you see that:

Note in the equations above,  can be expressed in radians or degrees. These last two 
equations are important to convert from rectangular to polar and from polar to rectangular 
coordinates, but they are also important in later mathematical concepts. We call these two 
equations parametric equations, since two new parameters r and  have been introduced into 
the relationships between x and y. We will revisit parametric equations in a later section.

Many scientific calculators are able to convert from rectangular to polar coordinates. These 
calculators usually have an R$P and P$R button. Check your calculator for these buttons 
and practice their use in the activities below. Check with your tutor if you have any 
difficulties.

Figure 5.5:  The point P in rectangular coordinates

Figure 5.6: Point P with cartesian coordinates (x, y), r units from 
the origin
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Example

Convert (8,  2) into polar coordinates (both in degrees and radians).

(You could check this result by using )

Since (8,  2) is in the 4th quadrant then in polar coordinates the point is approximately
(8.25,  14!) or (8.25, 346!)

You could also give this answer in radians:

Therefore, (8,  2) in polar coordinates is approximately (8.25, 0.25). Note there is no degree 
sign above the 0.25, so you can assume it is in radians.

Activity 5.2

1. Convert from rectangular to polar coordinates

2. Convert from polar to rectangular coordinates

(a) (i) ( 1, 1) (ii) ( 0.5,  1) (iii) (0, 0.2) showing all working

(b) (i) (3, 4) (ii) (1, ) using the rectangular/polar conversion 
keys on your calculator.

(a) (i) (3, 30!) (ii) (2, 89!) (iii) (1, ) showing all working

(b) (i) (1.5, 3 ) (ii) (2,  120!) using the rectangular/polar conversion 
keys on your calculator.
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5.1.3 Vectors

Before we move away from out study of points, there is one more way in which we can 
describe a point. This is through vectors. Vectors are not just ways of describing points, but a 
study of vectors (called vector analysis) allows us to describe and quantify many concepts in 
the physical world. In this unit we will only be touching on the elementary aspects. First, let’s 
investigate the concept of a vector.

In this and other studies, we have investigated objects which require only one measure. 
Examples of these are angles, lengths, areas, masses, times and temperatures. These measures 
are called scalars, since the object is measured on a given scale. 70!; 25 cm; 4 cubic metres 
are all scalars. Notice they all require only one single measure and they do not need any 
statement about direction. Often, we need more than one measure, for example, the location of 
a point in space, the acceleration of a particle, the motion of an object in a particular direction. 
To describe these measures, a new concept called vectors was developed in the 19th century 
and is now an essential tool for today’s engineers, mathematicians, physicists and economists.

To explain what a vector is, let’s go back to our taxi scenario. You are in a taxi (call this 
position O) 5 kilometres from your destination, 40! north of east (call this position P). The 
distance from O to P is 5 kilometres and the direction is 40! north of east. A distance that has 
direction is called displacement. We can depict this as a vector. In figure 5.7, the line with an 
arrow represents the vector.

Figure 5.7:  Vector OP

The word vector comes from a Latin word meaning to carry. So in mathematics, it has the 
connotation that something is carried off for a certain distance in a certain direction. It is 
important to note that a vector carries two pieces of information – a magnitude and a direction 
(the same information as in polar coordinates). In the taxi example it is a length and direction. 

 is called a displacement vector. The diagram below shows how vectors are depicted.

Tip for success.
There are a number of new terms introduced in this section.
Make sure you understand these terms. Have you a notebook of examples and new terms?

N
Destination P

Taxi O

40!

OP
   !

O

P
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The arrow on the line shows the direction of the vector and the letters O and P indicate the tail 
and head of the vector, respectively.

If the taxi driver decided to return to the original position (at O) after dropping you off (at P), 
then the distance will be 5 km, but the direction will be 40! south of west (opposite to the 
original direction). The vector depicting this will be:

The name of this vector is . Notice the length of the line segment is the same, but the 
arrowhead is at O.

Vectors are a really useful way of describing quantities that have both magnitude and direction 
not only in the fields of physics and engineering but also in business and economics. In the 
example above we looked at displacement vectors. But we could also think of the following as 
examples of vectors 

• Velocity – a wind blowing at 20 km/h in an easterly direction

• Acceleration – a car travelling at 4 metres per second per second in an easterly direction

• Force – a force of 20 Newtons is exerted on a 4 kg body at an angle of 20!.

• Magnetic fields – at 0.9 Teslas in an easterly direction.

• Revenue – revenue collected from different outlets on different items.

Example

Which of the following are vectors?

The volume of a pool is 2 megalitres.
The displacement of town A from town B is 50 km, 20! east of north.
The temperature of the ground is  10!C.

The first example is a scalar since it only depicts the amount of water in the pool.
The second example is a vector since it depicts both magnitude and direction.
The third is a scalar since it only gives the magnitude of the temperature of the soil.

O

P
40°

PO
   !
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Activity 5.3

1. Which of the following are vectors and which are scalars? Give reasons for 
your answers.

The distance from my house to work is 10 km.

It took 25 seconds to run the race.

The rocket went 100 metres per second, straight up.

A sled weighing 240 kg is pushed 2.3 metres by a constant force of 130 
Newtons. 
(One Newton is approximately the force required to lift a mass of 0.1kg.).

The block of concrete weighed 1.2 tonnes. 

The acceleration due to gravity on the moon is 1.6 ms–2,

He went 30! west of south.

One important point to note about vectors is that they represent magnitude and direction, but 
in a plane they can be placed anywhere, their position does not matter. We call these free 
vectors. Look at the figure 5.8. In each case the lines represent the same vector, since they are 
the same in both magnitude and direction. The difference is their origin point. For example, if 
we blast a rocket vertically up in space with a certain force, the vector depicting this force will 
be the same whether the rocket is in Cape Canaveral or Woomera. However, there is an 
obvious difference since the forces start at different origin points. So far we have been looking 
at free vectors. If we can position these vectors in a reference system – the Cartesian plane, 
then we can describe a vector using this system. 

Figure 5.8:  Equivalent free vectors

But what do vectors have to do with points? A vector is a quantity that has magnitude and 
direction; it can tell us how to get from one point to another. But in the Cartesian coordinate 
system we can describe the position of a point by a single vector if we think of it as the 
displacement of the point relative to the origin. In this case the vector is called a position 
vector. 
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The vector  can be placed anywhere, as in figure 5.8, but if we placed it in the Cartesian 
coordinate system with O as the origin, then we have the diagram in figure 5.9.

Figure 5.9:  The position vector 

If P is the point (4, 3), we can call the displacement of the point from O (the origin) to the point 

P, the position vector .

One way to depict the value of this vector is . Have you seen this notation before? From 

your previous studies you should have recognised this as a 2 . 1 matrix (2 rows and 1 
column). If you are unsure of matrices have a look at module 2 or contact your tutor.

Recall that a matrix can be a way of storing numbers, so the matrix  by itself is just a set of 

numbers. However, if  is described as a position vector then it means a point has moved 

from the origin, 4 units in the positive direction of the x axis and 3 units in the positive 
direction of the y axis.

Example

Find the magnitude of the vector .

Something to talk about…

Do you know the difference between a position vector and a displacement vector? Could 
you explain this difference to a friend?
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If we depict the vector on the Cartesian plane, then we can see clearly that to find the 
magnitude of the vector, we can use Pythagoras’ theorem. The notation for the magnitude of a 

vector is the absolute value symbol , so in this case we want to find . The arrow above the 

 indicates that it is a vector.

The magnitude of the vector is approximately 5.4 units and, since  is in the 4th quadrant, the 
direction of the vector is –21.8(.

Activity 5.4

1. Find the magnitude of the following position vectors:

2.

If, back in our taxi, we had said we wanted to go 5 km 40( north of east, the taxi driver would 
have had to translate it back into number of kilometres east and number of kilometres north 
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(assuming a rectangular road system). If we let x be the number of kilometres east and y the 
number of kilometres north (see figure 5.10) then we could find x and y by using the 
parametric equations:  (see section 5.1.2).

Figure 5.10:  Resolving the vector into components

So the taxi travels approximately 3.83 kilometres east and 3.21 kilometres north. In vector 
terminology, this is called resolving a vector into its components. Instead of using the 
compass directions, we introduce a new term called the unit vector.

Two possible unit vectors are called .  is a free vector parallel to the x-axis and  is 
a free vector parallel to the y-axis. Both are one unit long and travel in the positive direction of 
the axes, as seen in figure 5.11.

Figure 5.11:  Unit vectors  and 

If we had a vector  which is 5 units long travelling parallel to the positive direction of the

x-axis then it becomes five times the unit vector  or  (see figure 5.12). If we had another 

vector  which was 4 units long, travelling parallel to the negative direction of the y-axis, 

then it becomes  (see figure 5.12). Note the numbers 5 and 4 are scalars since they just 

give the magnitude of the vector. The negative indicates the direction of the .
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Figure 5.12:  Vectors  and 

Remember we can place vectors (free vectors) anywhere we like, the vectors can be positioned 
as in 5.13, where the points P and B are coincident (i.e., at the same point) or in any other 
position.

Figure 5.13:  Vectors  and 

In the taxi scenario we can depict the displacement by breaking it down into its horizontal and 
vertical components and using these unit vectors (see figure 5.14).

So the vector depicting the displacement from the start to the destination becomes (  + 

). We put a ‘+’ between the components, but vector arithmetic is a topic that will be left 

for your future mathematics studies.
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Figure 5.14:  Displacement vector resolved into its horizontal and vertical components

Example

If A is the point (5, '9) and B is the point (6, 1), what is the vector depicting the displacement 

from A to B (in form)? What is the displacement from B to A?

The horizontal distance from A to B is 1 and the vertical distance is 10, so the vector is 

 and .

Activity 5.5

1. Resolve the following vectors into horizontal and vertical components and 

write in  form:

2. Peter is trying to locate his lost wallet. He is told that it is in a letterbox 
exactly 7 km away as the crow flies. He is also told that if he drives 5 km 
West of his present position, O, and turns North he should be able to find the 
wallet. Assuming East and North coincide with the x and y axes respectively, 
write the location of the wallet in component form.

3. Find the free vector depicting the displacement from the point A(3,1) to the 
point B(–1,5).

(a) (b) (c)
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Summarising so far:

If we have a point P (x, y) which is r units from the origin O, and  is the angle between the 
positive direction of the x-axis and the line OP, then we can depict P in the following ways:

• P can be in the Cartesian coordinate system with the coordinates (x, y). 

• P can be in the polar coordinate system with coordinates (r, ). The relationship between 

x, y, r and  is found in the parametric equations: .

• P can be positioned in terms of a position vector  or  or , where the 

magnitude of the vector is r given by  and the direction of the vector is .

In the following section we will use rectangular and polar coordinates, as well as vectors and 
matrices to help describe lines and curves.

For your interest only…

We still don’t have enough information to help us with positioning a point in space, since 
we have only been positioning our points in 2 dimensions. If we introduce a new dimension 
to our studies, called, unsurprisingly, the z-axis, then we can describe a point in 
3 dimensional space. We will not be examining three dimensional geometry here except to 
say that it exists and follows the conventions we have been using. So the point (2, 5, 7) 
represents a point in space and this can be represented by the position vector depicted as a 

column matrix  or,  where  becomes the unit vector on the z-axis. 

We could also depict this in polar coordinates. So the point (5, 45º, 15º) is the point 5 units 
from the origin, 45º anticlockwise from the x-axis in the xy-plane and 15º from the xy-plane.

Figure 5.15: Figure 5.16:
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5.2 Describing straight lines

5.2.1 Equation of a straight line

In the previous section we described points using the Cartesian coordinate system, polar 
coordinates and vectors. In this section we will extend these descriptors from points to straight 
lines.

You have already studied straight lines and their parameters in module 3. In the line 
, y is the dependent, x is the independent variable and m and c are the parameters 

which determine the shape of the line, i.e., m is the gradient and c is the y-intercept. 

If we had a point P (4, 3) then the equation of the line segment that joins O (the origin) to P 

would be . In this case the  is the gradient of the line.

As you go on to do more mathematics, you will find that extra parameters will be introduced 
to describe the behaviour of lines and curves. Vectors are a useful way of dealing with these 
extra parameters. Let’s investigate how we could use vectors to depict straight lines. We have 
already used matrices to depict position vectors in the previous section. From your previous 
studies we have seen the matrix equation: 

. We can again think of this in the Cartesian coordinate system and consider  

as the position vector of any point in the xy-plane. We can now call  a vector 

equation which is really just identifying the position vector . In a real world situation this 

could be thought of as the position of an aeroplane 4 kilometres east and 3 kilometres north of 
its original position.

Now take this original equation and consider the following vector equations:

If we plot points from these position vectors on the Cartesian plane, and join the points, we 
would end up with a straight line.
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Figure 5.17:  Graph of  with Domain 

The vector equation of this line would be . We have now introduced another 

parameter t which is a scalar.

Can you interpret this?

You could say something like: ‘The  gives the direction, i.e., from the origin go 4 units 

horizontally and 3 units vertically t number of times.’

In our aeroplane scenario you could say the position of the aeroplane, t minutes after 

commencing its flight, is given by the equation , so after one minute you could say 

the displacement of the aeroplane is 4 kilometres east and 3 kilometres north of its starting 
point.

This idea of introducing a new parameter, especially time, is very important as you do further 
studies, especially in science and engineering. The Global Positioning System relies on it, in 
fact any mathematics involving motion will often have equations expressed in this way. 

Can you see the relationship between the vector equation above and the equation  

(in Cartesian mode)? 

Look at the vector equation . From your knowledge of matrices (which operate in 

much the same way as vectors), you could say that:
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So we can then say:

These above two equations are the parametric forms of the vector equation.

From equation (i) 

Substitute for t in equation (ii)

This is our equation in Cartesian mode.

So we can move from the equation in vector mode, to a parametric form to the Cartesian 
equation, depending on the context of our problem. So far in your mathematics learning, you 
have only needed to use ‘fairly’ simple equations, but as you advance you will need to choose 
from your mathematical tool box the most appropriate and easy to use tool. At times, you will 
find the vector form or the parametric form to be much more appropriate.

Example

Graph the equation . Express this in vector form using  as a position vector of a 

particular point on the line. Express it in parametric form and verify your solution is correct.

Figure 5.18:  Graph of 

In vector form we start at P (0, 4) then move 4 units horizontally and 3 vertically t number of 
times. The equation then becomes:
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Check by taking a value of t say '2:

Check that this point lies on the line.

The equation could also be written in vector form:

In parametric form the equations will be:

From the first equation  substituting for t in the second equation gives us the Cartesian 

form of the equation .

Can you see that the vector equation  in the example above also 

depicts the same line but using a different position vector on the line.
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Activity 5.6

1. Write the equation 

(a) in vector form

(b) in parametric form.

2. Consider the equation .

(a) Sketch the graph.

(b) Write the equation in vector form using parameter t and any suitable 
position vector

(c) Rewrite the equation in parametric form and verify your result is 
equivalent to the original equation.

(d) Which, if any, of the following depicts this same line:

What we have seen in this section is that like points, lines can be expressed in different forms. 
As you study more mathematics, you will see that different forms become important in 
different situations.

Summarising so far:

A line can be expressed in the form of , where m and c are the parameters that 
determine the gradient and y-intercept respectively.

• A line can be expressed in terms of vectors  where  is the position 

vector of a particular point on the line,  is a vector that gives the direction of the line 

and t is a parameter determining the size of the line.

• A line can be expressed in terms of another parameter, giving a set of parametric 
equations:
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(iii) (iv)
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5.2.2 Distance between points

Before we move on to an investigation of curves, let’s look at two tools which are useful to 
investigate the characteristics of straight lines. That is finding the length of a line segment and 
its mid-point.

You have already found the distance between a point and the origin using Pythagoras’ theorem 
in section 5.1.2. We will now expand this to find the distance between any two points.

Figure 5.19:  Line segment PQ

In figure 5.19, P is the point (2, 5.5) and Q is the point (8, 10). To find the distance between the 
points, we set up a right-angled triangle with P and Q as the end points of the hypotenuse and 
R as the third corner (see figure 5.20). By subtracting the coordinates of the points we find 

 and  (the symbolism for length of line segment is a line above the two end 
points).

Figure 5.20:  Finding the length of PQ by subtracting the coordinates
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To find the length of the hypotenuse we use Pythagoras’ Theorem.

Now let’s generalise this. If we had two points  as in figure 5.21, the 

lengths of the sides  and  would be 

Figure 5.21:  Finding the length of a general line

For any two points the distance between them is found by using the formula:

Example

Find the distance between the points P (#2, 4) and Q (7, #6).

Since we are dealing with a length of a line we are 
only concerned with the positive square root.

Taking only the positive square root.

2 2 2

2 2

6 4.5

6 4.5

36 20.25

7.5 units

PQ

PQ

" $

" $

" $

"

1 1 2 2P( ,  ) and Q( ,  )x y x y

QR PR
2 1 2 1 and y y x x# #

x

y

-4 -2 2 4 6 8 10

-4

-2

0
2

4

6

8

10 Q( , )x y2 2

P( , )x y1 1
R

2 1
y y−

2 1
x x−

2 2 2
2 1 2 1

2 2
2 1 2 1

( ) ( )

( ) ( )

PQ x x y y

PQ x x y y

" # $ #

" # $ #

2 2
2 1 2 1( ) ( )PQ x x y y" # $ #



 Module C5 – Analytical geometry – representing points and curves 5.23

Figure 5.22:  Line segment 

So, using the general formula with the appropriate substitution:

The length of the line is approximately 13.5 units.

Notice that it doesn’t matter which point you start with as long as you are consistent when 

substituting into the formula. In this case we are only concerned with the length of . So the 

length of  is the same as the length of .

However if we look at  as a vector (i.e. as the displacement from P to Q, then  is not the 

same as . Can you see why?

This is because vectors have direction as well as magnitude.  is going in an opposite 

direction from . The magnitude itself (i.e., the length of the vector), however is the same.
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Activity 5.7

1. Find the distance between points S (#3, #1) and T (1.5, 3).

2. Q is the point ( ). Find the magnitude (length) of the position vector 

.

3. A and B are points such that  and . Find .

4. Joe and Nadia start from the same position. While Joe walks 4 km in a NE 
direction, Nadia rides S30+W (i.e. 240º) for 10 km. How far apart are they at 
the finish?

5.2.3 Mid-point of a line

The second tool to use to investigate straight lines is the mid-point of a line.

Figure 5.23:  M the mid-point of PQ

Suppose you want to find the mid-point (M) of the line . Look at the x and y-coordinates 
separately. From figure 5.23 you can see the horizontal distance between P and Q is 6. If the 
x-coordinate of the mid-point M is xm then the distance between the x-coordinates of M and P 
is 3 (i.e., half of 6). To find the actual x-coordinate of M we then add 2 (the x-coordinate of P).

Do similar steps for the y-coordinate and find the value of the y-coordinate of M.

If you said 7.75 you would be right.

So the coordinates of the mid-point would be (5, 7.75).
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If we looked generally at two points  with the mid-point being  

the horizontal distance between the mid-point M and P is . 

Figure 5.24:  M the mid-point of PQ, where P and Q are any points

Similarly the horizontal distance between M and Q is . 

Since these distance expressions are equal we can write:

Similarly for y:

So for any line segment (as depicted in figure 5.24), the mid point is:

Activity 5.8

1. Find the mid-point of each of the segments described by the following points:

2. . Find  such that M is the mid-point of .

(a) A(0, 4), B(5, 1) (b) X(#2, 3), Z(4, #4)  (c) R(#1, #3), S(#1, 6)

(d) G(g, #g), H(#2g, g)
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3. Three of the vertices of the parallelogram OACB are O(0, 0), A(5, #2) and 
B(#1, 4). Find the coordinates of the point where the diagonals intersect. 
What are the coordinates of C?

5.3 Describing other curves

So far we have looked at points and straight lines, sometimes using new tools such as matrices 
and vectors. In module 3 you examined other curves i.e., polynomial, logarithmic exponential 
curves and rectangular hyperbola, and in module 4 you looked at trigonometric curves. Before 
we take a look at these from an analytical geometry perspective, we need to look at another 
family of curves: circles. We haven’t investigated these before, since they are not functions, 
but they are important, as Osserman (1995) in his book, Poetry of the Universe states: ‘Of all 
the shapes that were studied by mathematicians, one held a special fascination: the circle (and) 
was destined to play a powerful role… in the future attempts to describe the shape and 
workings of the world and the universe’ (p. 7).

5.3.1 Circles

In section 5.2 we looked at the distance between two points, which relied on Pythagoras’ 
Theorem. Now let’s look at a series of right-angled triangles all with a hypotenuse of 1 and see 
how they relate to the circle. In each case below the hypotenuse is one unit but the other two 
sides (call their lengths x and y) have changed in value. However they all satisfy the equation 

.

x = 0.707; y = 0.707

x = 0.8; y = 0.6

x = 0.90; y = 0.436
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Take different values of x and y and look what happens to point B of the triangle, if we keep A 
in the same position.

Figure 5.25:  Right-angled triangles with different side lengths, but same hypotenuse

Can you see that point B traces a curve.

If we placed this in the Cartesian coordinate system with the point A as the origin, then we can 
continue making triangles in the other three quadrants.

Figure 5.26:  Right-angled triangles with different side lengths, same hypotenuse, inscribed in a circle

The point B now traces a circle with the radius being the hypotenuse of the triangle. Can you 
see what the coordinates of the point B are? It’s the point (x, y).

So the equation  is the equation to a circle with a radius of 1.

Try sketching this in Graphmatica. You should get a graph similar to the one in figure 5.27.

Figure 5.27:  Graph of 
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Example

Sketch the graph of . Confirm your sketch by using Graphmatica.

The radius of the circle will be . The sketch below is from Graphmatica.

Figure 5.28:  Graph of 

Activity 5.9

1. Sketch the graphs:

2. Write the equation for the following circle:

3. A circle is centred at (0, 0) and has a radius of 2.5. Write its equation.

4. What is the equation of the circle, centre (0, 0), passing through the point
(#4, 3)?

If we look at the right angled triangle again in the coordinate system, the point B could also be 
described in terms of its polar coordinates.

(a) (b)
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So the points (1, 45+); (1, 37+); (1, 26+) all lie on the circle . One of the advantages 
of thinking of curves in terms of polar coordinates is the simplicity of the equations. If we 
assume we are working in polar coordinates, the equation of a circle with a radius of 1 is r = 1. 

This is a lot simpler than the equation . In Graphmatica, if we type in r = 1 {0,2pi} 
({0,2pi} specifies the domain in radians), then it will draw a circle just like the one in figure 
5.27.

We can also draw the circle in terms of the parametric equations . 

When the radius is 1 the equations become . In Graphmatica type in 

. Try this for different values of r.

We can also draw circles on polar coordinate graph paper. In Graphmatica, change the graph 
paper to polar coordinates and type in r = 1 (this is called a polar equation) and your graph 
should look like this.

Rectangular Polar

x = 0.707; y = 0.707

B is the point (0.707, 0.707)
B is the point (1, 45+)

x = 0.8; y = 0.6

B is the point (0.8,0.6)

B is the point (1, 37+)

x = 0.90; y = 0.436

B is the point (0.9, 0.436)

B is the point (1, 26+)
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Figure 5.29:  Graph of a circle with a radius of one unit

Notice the x-and y-axes are still present in Graphmatica, but points are plotted in accordance to 
r and . Use the coordinate cursor to check the coordinates of some points.

Activity 5.10

1. A target is made up of 3 concentric circles as shown. Write the equation of 
each.

2. Write the parametric equations of circles, centre O, and:

3. The point (5, #7) lies on a circle, centre O. Find the polar equation of the 
circle.

(a) radius = 2 (b) radius 1.5

Time to reassess…

How are you going so far? Do you feel you have been swamped by new information! Now 
may be a good time to look at your notes again and see what you have learnt; how it all fits 
together. Maybe you want to look at some other material and see what they say about these 
concepts. If you have access to the Internet, why not go to some of the sites suggested in the 
introductory book. Ask you colleagues about these concepts, and where they fit into real 
world situations.
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5.4 Transformations

In this section we will review some of the work you have done in previous sections and 
modules, but look at it from the perspective of geometric transformations. You may have come 
across the idea of transformations before in art, drawing or some computing programs where 
you wish to reflect, rotate, translate, enlarge, or stretch figures. All of these movements are 
called transformations. As you do more study you will see many instances where you will 
need to study mathematics involving movement. For example in the building construction 
industry when there is load on material a strain is produced (a change in shape); magnetic 
forces work in much the same way. In aerodynamics, the study of air flowing past aeroplane 
wings involves the changing shape of the air stream; similar forces work in hydrodynamics. 
Often times this movement can be manipulated more easily using matrices.

The following illustrations exemplify the transformations. For each of the transformations you 
may like to pick a point and see its new position in relation to the original one. We also express 
the points in terms of position vectors and the transformations in terms of matrices.

In each case we will present something for you to think about which will then be addressed in 
the activities.

5.4.1 Transforming points

Reflection

Figure 5.30:  Shape under reflection in y-axis

If we reflect the figure above in the y-axis, every y-coordinate remains the same. Every
x-coordinate changes sign e.g., point A (#3, 4) becomes B (3, 4).

How can matrices help us with reflecting points? If we depict the point A as the position 

vector  and the point B as the position vector , then how do we get from A into B?

i.e., from  to ?
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Since A and B are now in matrix form, we can use our knowledge of matrix multiplication to 
assist in this reflection.

Recall that we can multiply two matrices, C and A, together to obtain a third matrix, B, 
i.e., CA = B. Now if A and B are both 2 - 1 matrices, then C must be a 2 - 2 matrix. What

2 - 2 matrix would allow  to be transformed to ?

Spend a few minutes (trial and error) seeing if you can find the values missing in the 
following:

Can you see that  multiplied by the matrix  will give the answer we want?

Check that the point (#6, 4) is transformed to the point (6,4) under the reflection .

Try doing this for a few more points to confirm your understanding.

Something to think about…

We can also reflect our figure in the x-axis or in any other line we like to draw. What would 
be the reflection of the point ( 3, 4) in the x-axis? There is a 2 ! 2 matrix similar to the one 
above which produces this reflection in the x-axis. See if you can guess what it is. If we 
reflect a point in the line y = x, what will be the new point? Can you find a 2 ! 2 matrix that 
will do this reflection? What does this tell us about inverse relations?

We will address these reflections in activity 5.11.
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Rotation

Figure 5.31:  Shape under rotation of 45* in an anticlockwise direction

If we take the figure above and rotate it anticlockwise about the origin through an angle of 45*, 
both the x and y-coordinates change but the distance from the origin does not.

For example the point (5, 80*) (in polar coordinates) becomes (5, 125*). If we take the point
(–3, 4) using the same rotation, what is the new point? We could change the point to polar 
coordinates then do the transformation, or we could use a matrix. The matrix multiplication is 
a bit complex at this stage, so it is just included for your interest. You may study this in more 
depth in further maths study.

For your interest only. You do not have to learn this:

If we take the position vector  and multiply it by the matrix 

Then we get

Something to think about…

Can you find the rectangular coordinates of the point ( 3, 4) after it was rotated as above 
through 45* without using matrices? Your answer should be the same as the one in the box 
above. We will address this rotation in activity 5.11.
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Translation

Figure 5.32:  Shape under translation of 5 units in the positive direction of the x-axis

Translation is a movement in a given direction through a given distance. It can be horizontally, 
vertically or at any angle.

In the diagram above the figure is moved in a given direction (0*) through a given distance 
(5 units). So the point P (1, 1) becomes P,(6, 1).

We could also depict this in matrix form. If we represent P as the position vector  then what 

matrix would translate  to . In this case we can add the matrix .

.

What would the translation matrix  do to the point P?

Using matrix addition we get .
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Figure 5.33:  Point P under translation by the matrix 

Enlargement

Figure 5.34:  Shape enlarged by a factor of 2

The figure above is enlarged by a factor of 2. The point (0, 1) becomes the point (0, 2).

If we take the matrix  and multiply it by  then we get .

If we wanted to enlarge it by a factor of 4 the matrix would be .

Something to think about…

The matrix  can be thought of as a displacement vector. Why?
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Stretch

Figure 5.35:  Shape stretched horizontally by a factor of 2

Stretch is basically enlargement in one direction only. Think of the figure above on a piece of 
stretchy material. Grab the material at two ends and pull. The figure distorts in one direction.

In figure 5.35 above the shape is stretched in the horizontal direction by a factor of 2. The 
point (1, 1) becomes the point (2, 1).

If we shrink it by a factor of 4 then the point (2, 1) would become the point (0.5, 1).

Again, let’s think of this in terms of the point P as the position vector . Again we can use 

matrix multiplication, but this time the y-coordinate does not change.

Can you guess what the matrix would be to stretch  to become 

?

If we wanted to shrink the figure in the horizontal direction then the matrix would be . 

The new point would be .

Something to think about…

Under dilation (i.e. enlargement), what happens if the figure is not centred about the origin?

x

-8 -6 -4 -2 2 4 6 8

y

-4

-2

0

2

4

2

1

" #
$ %
& '

2

1

" #
$ %
& '

4

1

" #
$ %
& '

? ? 2 4

? ? 1 1

" #" # " #
($ %$ % $ %

& '& ' & '

1
0

4

0 1

" #
$ %
$ %$ %
& '

1 1
2 0.50 2 0 1

4 4
1 1

0 1 0 2 1 1

" # " #
! ) !" # " #$ % $ %( ($ % $ %$ % $ %$ % $ %& ' & '! ) !& ' & '



 Module C5 – Analytical geometry – representing points and curves 5.37

Example

Write down the 2 ! 2 matrix that will transform  to . Once you have found this, use 

the matrix to reflect the point (–2, 4) in the x-axis. Check your answer with a diagram.

We need to form a matrix equation in the form: .

The 2 ! 2 matrix will be .

We can use this matrix to reflect the point ( 2, 4) in the x-axis:

From the diagram, you can see the matrix  reflects the point ( 2, 4) in the x-axis on to 

the point ( 2,  4).

Activity 5.11

1. Write down the 2 ! 2 matrix that will transform  to .

Something to think about…

What happens when we stretch a shape vertically? Can you think of the 2 ! 2 matrix that 

would change the point  to the point  by a vertical stretch? We will address this 

stretching in activity 5.11.
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Use the matrix to reflect the point (–2, 4) in the y-axis. Check your answer 
with a diagram.

2. Use matrix multiplication to reflect the point (30, 21) in the x-axis.

3. Under a reflection in the line y = x, (1, –8) is transformed to ( 8, 1). Write 
down the 2 ! 2 matrix that reflects coordinates in the line y = x. What are the 
coordinates of the point ( 3,  3) after reflection in the line y = x?

4. The point (4,  5) is transformed to the point (5,  4) under reflection. Find the 
2 ! 2 matrix and specify the transformation.

5. Reflect (3, 2) in the x-axis; then reflect its image in the line y = x. What are 
the coordinates of the final image?

6.  (a) Convert the point (5,  12) to its polar coordinates.

(b) Hence, or otherwise, find the rectangular coordinates of (5,  12) after it 
has been rotated in an anti-clockwise direction through an angle of 30*.

(c) Now rotate this image through a further angle of 60* writing the 
coordinates in rectangular form.

(d) Check your answer to (c) by rotating the original point (5,  12) through 
an angle of 90*.

What this section illustrates is the geometric equivalent of the function work that you have 
been doing, especially in module 3. Recall that a function is a mapping from the domain onto 
the range. Here a transformation is a mapping of the original figure onto an image. For 
example, when we looked at functions in module 3, if we had a set of numbers {1,2,3,4,5,6} 
and applied the function ‘double each number’ we would be mapping onto another set 
{2,4,6,8,10}. If we took an infinite set of numbers, we could have seen this algebraically as 

 and graphically as

Figure 5.36:  Graph of 

Similarly if we have a set of points{(1, 1), (2, 2), (3, 3), (4, 4)} and reflected these points in the 
y-axis i.e. mapped them onto another set {( 1, 1), ( 2, 2), ( 3, 3), ( 4, 4)}. Graphically we 
could see it as in figure 5.37.
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Figure 5.37:  Graph of mapping

Let’s look at all of these transformations in general terms. If we have a point (x,y) in the 

Cartesian coordinate system depicted by the position vector  then by multiplying it by the 

matrices below we can find a new point under the particular transformation. (You do not have 
to remember these transformations.) We will return to this when we look at transforming lines.

Transformation Coordinate change Matrix transformation

reflection in the y-axis (x,y)-(–x,y)

 

reflection in the x-axis (x,y)-(x,–y)

 

reflection in the line y = x (x,y)-(y,x)

 

rotation of  degrees in an 
anticlockwise direction (where 

so, new point is

enlargement by a factor of k (x,y)-(kx,ky)

 

stretch horizontally by a factor of k (x,y)-(kx,y)

 

stretch vertically by a factor of k (x,y)-(x,ky)
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5.4.2 Transforming straight lines

How can we use this idea of transformations more explicitly in lines and curves? You have 
already had practice with some of these transformations in module 3 and module 4, although 
we didn’t use the term transformation. We will now look at them in more general terms. If we 
take the line y = x we can actually transform this into any other line we want by using the tools 
from the table in the previous section. We can use matrices, but we could also use algebra. As 
you do more mathematics you may find the matrix method more appropriate at times. In fact if 
you continue to study mathematics at university you may discover how to transform any line 
into any other shape (using projective geometry) a bit like the ‘morphisms’ in computer 
graphics or the special effects in the movies!

While it would be possible to extend your knowledge of matrices for lines and curves, we will 
leave this for another unit, but you may work on this yourself! In the following section we will 
see how the transformations are applied algebraically.

The examples below show transformation of an original straight-line equation to a new 
straight-line equation. In this section you may like to photocopy or duplicate these sheets of 
paper on to tracing paper and physically cut or fold the paper to simulate the particular 
transformation (or just use your imagination if you have good visual skills). In the reflections, 
translations and stretching we will give general rules, but for rotations – just something to 
think about.

We also want you to consider the points highlighted in module 3 when investigating functions 
i.e.,

• What will be the shape of the new graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

• What is the rate of change of the dependent variable with respect to the independent 
variable?

• Is it a continuous function?

• Do you think it will have an inverse function?

Reflection

Look at the function in  figure 5.37. If we reflect it in the y-axis, then what is 
the new function?

Figure 5.38:  Graph of  and its reflection in the y-axis
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Comparing both lines, for each point, the x-coordinate changes sign but the y-coordinate stays 
the same. The y-intercepts are the same. The gradients have the same magnitude but a different 
sign. It is still a continuous function and it will have an inverse.

Can you see it becomes ? Try plotting some points to confirm this.

Do this reflection for a few other functions. What happens to:

Sketch them (or use Graphmatica) then reflect them in the y-axis. (You may like to fold the 
paper along the y-axis.) Can you see they now become respectively:

Now we want to generalise this process. If we had a function , what is the 
equation of the new function if we reflected it in the y-axis?

We could have said , but there is another general function that would also work, 
and is more useful when we look at further curves. The new function can be created by 
replacing the x with  x so with our function from figure 5.37:

If you are unsure about this step, revise the section on functional notation in module 3.2.1.

In general for reflection in the y-axis

Now reflect the following in the x-axis:

You should be able to find a general statement for reflection in the x-axis.
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Figure 5.39:  Graph of  and its reflection  in the x-axis

Can you see the new equations are the negative of the old equations?

So in general, for reflection in the x-axis

What happens when the line is reflected in the line y = x? (Recall the section on inverses in 
module 3.2.5.)

Can you see the general statement is 

Rotation

This is more difficult to do, and you need more understanding of matrices, in order to do this 
easily. What we expect you to do here is think about what the new line will look like and be 
able to sketch it. At this level you are not expected to use matrices to find a new equation.

Figure 5.40:  Graph of  and its rotation of 45* clockwise about the origin

If we rotate  clockwise about the origin through an angle of 45* then the graph looks 
about y + 3x. (see figure 5.39). Here the intercept remains the same but the gradient changes. 

 makes an angle of 117* (tan 117*0+  2). So if we move 45* in a clockwise direction, 
the angle is now 72*. The gradient is now 3 since tan 72* + 3.
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What if the line was rotated about a different point on the line (e.g. ( 4, 8)) or off the line e.g., 
about the point (1,1) as shown in figure 5.41?

Figure 5.41:  Graph of  and its rotation of 90! clockwise about the point (1, 1)

You may like to sketch some other scenarios by hand to get a feel for the effect of the size of 
the rotation and the centre of the rotation.

Translation

Here we will just look at line segments as they give a clearer indication of the translation 
involved.

Figure 5.42:  Graph of  and its translation 1 unit horizontally to the right

Look at figure 5.42. Here the line segment  is moved through a distance of 1 unit 
horizontally to the right. Most of the features of the new line are the same as the old line 
(including the gradient), but the y-intercept moves to  2, so the new equation is:

Do this for a few other functions. What happens to:
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Can you see they now become respectively:

In the above equations, each value of x has been changed by adding or subtracting a number of 
units.

In general if we translate a line a units horizontally then the new function becomes 

.

Stretch

Figure 5.43 shows the function . If we stretch it in the horizontal direction by a 
factor of 2, then what happens to the new function? The y-coordinate stays the same. The
x-intercept is doubled. The gradient has become much less steep. In fact it has halved. Can you 
see the new function becomes ?

Figure 5.43:  Graph of  and its stretch horizontally by a factor of 2

Do this for a few other functions. What happens to:

Something to think about…

What happens if the line segment is translated vertically? Can you find a general statement 
about translating a function vertically? We will address this translation in activity 5.12.
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Can you see they now become respectively:

So in general, if we stretch a line n times horizontally then 

In the stretches we have talked about, the centre of the stretch is along the axes, so the point on 
the y-axis in a horizontal stretch does not move. Can you see what happens when we may want 
to stretch but take the centre from another axis – say the line x = 2 as in figure 5.44?

We will address these stretch questions in activity 5.12.

Figure 5.44:  Graph of 

When the function is stretched horizontally the point (2,4) remains the same but the gradient 
halves, so the new line will be y = 2x + c. If we substitute (2,4) into the equation, we see c = 0, 
so the equation will be y = 2x.

Something to think about…

Can you create a general statement when we stretch a function vertically?
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Activity 5.12

1. Sketch the graph of  and , its rotation of 180!*about the 
origin, clearly marking all x- and y-intercepts.

2.  (a) Sketch the graph  and  its translation if it is moved one 

unit to the right and write the function .

(b) If  is the vertical translation of  when it is moved down two 
units, sketch its graph and write its function.

3. Consider the function .

(a) If  is stretched horizontally by a factor of 2 to become ,

(i) Sketch both  and .

(ii) Write the function .

(b) If  is stretched vertically along the y-axis by a factor of 3 to become 

, write .

(c) If  is stretched horizontally by a factor of 2 with the centre as the line 
x =1, what is the new function?

Let’s have a look at the transformations of straight lines in general in relation to our points we 
did in the previous section. If we had a function  with a point on the line (x,y), what 
happens to the point and the line under the transformations below.

Transformation Coordinate change Functional change

reflection in the y-axis (x,y)+( x,y)

reflection in the x-axis (x,y)+(x, y)

reflection on the line y = x (x,y)+(y,x)

stretch horizontally by a factor of k (x,y)+(kx,y)

stretch vertically by a factor of k (x,y)+(x,ky)

translation a units horizontally and 
b units vertically

(x,y)+(x+a,y+b)
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5.4.3 Transforming parabolas

Exactly the same method can be used in transforming parabolas. Look at the transformations 
below and see how the generalisations in the previous table apply here.

Reflection

Figure 5.45:  Graph of  and its reflection in the y-axis

Figure 5.44 shows the function . If we reflect it in the y-axis it becomes 
.

The basic shape is the same, the y-intercepts will be the same; the y-coordinate of the 
minimum will be the same; the x-coordinate will be the same magnitude but a different sign. 
The average rate of change will be different. For example for the function  between x = 1 
and 2 we can see the gradient falling. This is the same average rate of change for  for x 
between  1 and  2 except it is positive. 

How can we predict the equation to this new curve? Consider the statement that reflection in 
the y-axis produces a new function . Does this work for parabolas?

Try a few more yourself in Graphmatica to convince yourself that it works.

What if the parabola was reflected in the line y = x? Check to see the general statement: 

 works. (You may like to check this using Graphmatica as well as folding along 

the line y = x). Be careful! We cannot call the new equation  since it is not a function.

Something to think about…

What happens when it is reflected in the x-axis? Check to see the general statement 

 works in this case.
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Rotation

Figure 5.45 shows the function  being rotated anticlockwise about the origin through 
an angle of 90!.

Figure 5.46:  Graph of  and its rotation 90! anticlockwise.

The x and y values are now swapped and the domain is only negative values of x. The new 

parabola, however is not a function, but if we let  then the new equation is . 

Can you see this is exactly the same as reflecting the parabola in the line y = –x?

What if the parabola was rotated about a different point (e.g. the point (0,5)? Can you sketch 

this new curve? If you think about it as first rotating  as above then translating it so 
the point (0, 0) becomes the point (5, 5), as in figure 5.46. Can you guess the equation of this 
new curve?

Figure 5.47:  Graph of  after it has been rotated 90! anticlockwise about the point (0, 5)

Something to think about…

What happens when it is rotated 180!?
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Translation

Figure 5.46 shows a translation of the function , 5 units to the left.

Figure 5.48:  Graph of  and its translation 5 units to the left

The new function has the same basic shape as the previous one but the y-intercept will be 
much further up the y-axis. In the previous section we said that if we moved a line a units then 

each x value is moved a units, . In this case we are moving 5 units to the left so 

a =  5. Therefore we must add 5 to each x value i.e.

Check this by drawing both graphs on Graphmatica.

The statement in general if we translate a line a units horizontally then the new function 
becomes , holds true for parabolas as well.

Try some more translations and draw them on Graphmatica to convince yourself that it works.

Stretch

Figure 5.48 shows the parabola . It is stretched by a factor of 2.

Something to think about…

What happens if we translate it vertically? In the translation in figure 5.47, could you see 
the transformation in terms of a reflection in a vertical line (not the y-axis)?
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Figure 5.49:  Graph of  and its stretch by a factor of 2

The new parabola is still a function. Here the shape of the parabola has changed; the
y-intercept is the same; the average rate of change for the new graph will be much less for the 
same x intervals.

Does the general statement from the previous section i.e., that if a line is stretched horizontally 

then  apply here? In this case n = 2. So the new function is:

Check this on Graphmatica and try a few more examples.

The statement: in general, if we stretch a line n times horizontally then  holds 

true for parabolas as well.

Figure 5.50:  Comparison of average rates of change for  and 

Ask yourself: What happens to the average rate of change? Let’s take the change from (0, 2) to 

(1, 6). The rate of change is . 

In the new function, the rate of change for the same x-interval is 1 (a quarter of the original) 
since the coordinates are now (0, 2) and (1, 3). In figure 5.48 you can see the second line is 
much less steep than the first line. Is this a bit unexpected?
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Try taking other points to see if the rate of change for the new function is a quarter of the old 
function. In the next module you will discover why this is the case.

Activity 5.13

1. Consider the function .

(i) Sketch  and its reflection in the y-axis.

(ii) Write the equation for the reflection.

(iii) Is it a function?

(iv) Reflect  in the x-axis.

(v) Sketch its graph and write its equation.

(vi) Is this reflection a function?

(vii) The graph of  could have been rotated through 180! to obtain the 

reflected graph above. About which point would  have to be 

rotated?

2.  (a) Consider the function .

(i) Sketch the parabola .

(ii) Rotate the parabola about the origin in an anticlockwise direction 
through 90! and sketch its graph.

(iii) What is its equation? Is this a function?

(iv) On the same axes as above, sketch the rotation if  had been 
rotated about the point (0, 1).

(v) What is the equation of this rotation?

(b) What is the equation of the rotated curve in figure 5.46?

3. Consider the function 

(i) Find  which represents  stretched horizontally by factor 2.

(ii) Which curve is steeper for corresponding values of x?

(iii) Now stretch  vertically by factor 2 to obtain .

(iv) Which function ,  or  is the steepest?

Something to think about…

What happens if you stretch parabolas vertically?
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5.4.4 Transforming other curves

In this section you will see how the transformations apply to the functions you have studied in 
modules 3 and 4 i.e., exponential, logarithmic and trigonometric curves. However, we will 
also look at a few specific transformations of interest.

Reflection of the exponential curve

Recall in module 3 (3.3.2) the exponential and logarithmic functions are inverses of each 
other.

Reflection of  in the line y = x produces the line  as seen in figure 5.49.

Figure 5.51:  Graph of  and its reflection in the line 

When you reflect a curve in the line y = x , the values of y and x swap so . Make y the 

subject of the formula and we get .

But if we reflect the exponential and logarithmic curves in the x and y-axes – what are the new 
equations?

For the exponential curves, you should get  for the reflections in the y and 

x-axes respectively, and you should get  for similar reflections for the 

log curves. Sketch these by hand on figure 5.50 and use Graphmatica to confirm your 
sketches. Note with each of these reflections the changes in domain and range of the functions. 

For example in the graph of  the domain is . So you will always be 

finding the log of a positive number!
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Example

If the function  below represents , what is the equation of the new function  
under translation?

The function has moved 2 units to the right so .

Example

If the function  below represents , what is the new function  under a 
reflection?

We can consider this as a reflection either in the x- or y-axis.

The new function will be:

Can you see these represent the same function?
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Example

If the function  below represents , what is the new function  under 
horizontal stretch? Comment on the average rate of change of the two functions.

 has been stretched by a factor of 2, so the new function will be .

 is changing much more slowly than  for any value of x.

Example

If the function  below represents , what is the new function  and how did 

this new function get transformed?

The new function was reflected in the y- or x-axis, or was rotated 90! either clockwise or 

anticlockwise. The new function will be .
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Activity 5.14

1. Consider the function 

(i) Translate  up two units, sketching both graphs.

(ii) Write the equation of the new function.

(iii) The point (0, 1) is translated to which point?

(iv) Translate  one unit to the left, sketching its graph and writing its 
function.

(v) The point (0, 1) has been translated to which point by this last 
transformation?

2. The function  is drawn below.

(a) What is the new function  under horizontal stretch?

(b) Under vertical stretch  is transformed to . What is the 
equation ? (Assume to stretch factor is a whole number.)
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3. Below is the graph of  and the graph of  which represents a 
translation of .

What is the new function ?

4. The graph of  and the graph of  representing a horizontal 

stretch of  are shown below.

 is the graph of a vertical stretch of . Write the equations of  and 

.

5. Consider the function .

(i) Sketch .

(ii) What happens if we reflect  in the line y =  x?

(iii) Sketch , the graph when  is translated two units to the right and 
one unit vertically upwards.

(iv) What is the equation for ?

(v) What are the new asymptotes?
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5.4.5 Transforming circles

As you have not dealt with circles in any great depth to date, we will look at circles separately. 
Transforming circles is an important tool to add to your mathematical toolbox and it 
introduces you to a new curve, the ellipse. These shapes are useful in the study of astronomy 
(with orbits of satellites, planets etc.), in the study of motion of many objects e.g. pendulums 
and engines.

So far we have looked at circles with centres at the origin. These circles will be unchanged by 
both reflection about the x and y-axes and rotation about the origin. So let’s start by looking at 
translating the circle.

Translation

Figure 5.52:  Graph of  and its translation 4 units to the right

If we translate , 4 units to the right horizontally, we produce the new circle. The 
shape and radius of the circle remain unchanged. Take the average rates of change at any two 
points on the circle. The new function will have exactly the same average rate of change 
except the x-values of the two points will be 4 units larger.

Each value of x has been moved 4 units to the right. The new centre of the circle becomes
(4, 0). The equation to the circle is not a function, but the pattern is still the same – subtract 4 
from each value of x and we get the new equation:

If we translate it 4 units vertically, then the equation becomes , and the new 
centre of the circle becomes (0, 4).

Now if we move it h units horizontally and k units vertically, then the new circle becomes 

, and the new centre of the circle becomes (h, k).

Practise drawing circles by hand and using Graphmatica changing the centre and the radius.
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Enlargement

Figure 5.53:  Graph of  and its enlargement by a factor of 2

If we enlarge the circle  we do not change its centre, only the radius. So if we 
enlarge it by a factor of 2, then the new circle has different x and y-intercepts. Instead of the 
radius being 5 it is now 10.

Can you see that the new curve will be: ?

What is happening to the rate of change at different points? Let’s just draw some lines and 

compare the gradients of the circles  and .

For the unit circle, the averate rate of change is about 1.29 and for the other circle it is much 
smaller, at about 0.34.

Stretch

Stretching in one direction produces an interesting shape. Enlargement of  in the 
horizontal direction by a factor of 2 produces a figure, called an ellipse.
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Figure 5.54:  Graph of  and its horizontal stretch by a factor of 2

The y-intercepts remain the same but the x-intercepts double, and the average rate of change is 
much slower for the ellipse.

Recall our pattern for stretching the lines and curves was . Now this is not a 

function but the pattern is the same. The equation for this ellipse, which is stretched 

horizontally from the circle by a factor of 2, is .

What would happen if we stretched a circle vertically?

The equation to the ellipse formed when stretching the circle  vertically by a factor 

of 4 becomes  and the ellipse is drawn in figure 5.55.

Figure 5.55:  Graph of 

We often express the equation to this ellipse as  (i.e., dividing the equation by 

4). Can you see why this may be a more appropriate form in some circumstances? Do you 
notice that it gives the x and y-intercepts in the denominators of the fractions?
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What if we stretched the unit circle by a factor of 4 units horizontally and a factor of 3 units 

vertically? We would then get the equation . The graph of this ellipse is 

shown in figure 5.56.

Figure 5.56:  Graphs of  and 

Notice the x-intercepts are ( 4, 0) and (4, 0) and the y-intercepts are (0, 3) and (0,  3).

In this ellipse the line from ( 4, 0) to (4, 0) is called the major axis. These points are called 
the vertices of the ellipse. The line from (0, 3) to (0,  3) is called the minor axis.

The general equation of an ellipse with a centre at the origin is where ( a, 0) and (a, 0) are the 
x-intercepts and (0, b) and (0,  b) are the y-intercepts.

Remember another way to depict the circle? This was through the parametric equations:

In the case of the unit circle in figure 5.56, where the radius is 1, the equations become:

In the case of the ellipse in figure 5.56, the x-coordinate of any point on the circle has been 
multiplied by 4, and each y-coordinate has been multiplied by 3. So parametrically the new 
equation becomes  (see figure 5.57).
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Figure 5.57:  Graph of circle and ellipse with points expressed parametrically

Try practising drawing ellipses by hand and check them using Graphmatica. Use both the 
ordinary and parametric version of the equations.

5.4.6 rotating hyperbolae

We will look at one final interesting transformation in this unit, and that is rotating rectangular 
hyperbolae.

Figure 5.58:  Graph of  and its rotation 45! anticlockwise

Rotation of  about the origin through an angle of 45!*creates a new hyperbola.

In figure 5.58 the hyperbola is now symmetric about the x and the y-axes. The vertices are the 

y-intercepts (0, ) and (0, ) and the two ‘arms’ of the hyperbola are equidistant from the 
origin.

Similarly rotation of  about the origin through an angle of  45! (i.e., clockwise), creates 

another hyperbola as seen in figure 5.59. 
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This time the vertices are the x-intercepts ( , 0) and ( , 0).

Figure 5.59:  Graph of Hyperbola after it has been Rotated 45! Clockwise

These hyperbolae have many applications, for example they can be used in navigation systems 
(LORAN – LOng RAnge Navigation). Many comets have hyperbolic orbits (since they have 
these orbits, they only pass our solar system once) and the sonic boom traces out the shape of 
an hyperbola at ground level.

The equations to these hyperbolae have a lot in common with the ellipses. The equation to the 
hyperbola in figure 5.58 is

while that of figure 5.59 is

Just like the ellipse, we often write equations to hyperbolae equal to one. So the equations 
above become:

We can change the general shapes of these graphs stretching them horizontally or vertically by 
dividing the x and y by different numbers, in much the same way as the shape of the ellipse 
was changed.

We can use Graphmatica to investigate the effect of changing the general equation

.

First let’s just change the value of a by giving b a value of 3.
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Figure 5.60:  Graphs of the family of hyperbolae 

In figure 5.60, the equation  has a = 1, 2 and 4 as you move further away from 

the origin.

You should have noticed that the value of a gives the x-intercept in the graph.

What do you notice about the relationship between the values of a and b and the graph?

You may also have noticed the curves seem to have another constraint on them, that is, how 
‘bent’ they appear. Remember with rectangular hyperbolas, the asymptotes were the x and y-
axes or lines parallel to them? Well if we rotated the hyperbola, then we have rotated the 
asymptotes 45! as well. What is happening here is that a set of asymptotes passing through the 
origin, are formed. Their equations are based on the values of a and b. Can you see what these 

equations would be? Look at the graph of , what are the equations to these 

asymptotes?

Figure 5.61:  Graph of  and its asymptotes

If you said the asymptotes are  in the case above you would be right. Try drawing some 

on your graphs in figure 5.60, like the one in figure 5.61. In these graphs, they all follow the 

same basic equation . If you draw the asymptotes of these hyperbolas, you 

would see that for the hyperbolas:
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In general, the asymptotes for the hyperbola .

Activity 5.15

1.  (a) Write the general equation of a circle, centre (h, k), and radius r.

(b) (i) What is the equation of the circle below:

(ii) Write the equation for the enlargement of the circle (about its centre) 
by a factor 3.

2. (i) Sketch the graph of .

(ii) On the same axes, stretch the graph horizontally by factor 1.5 as well as 
vertically by factor 3.

(iii) Write its equation.

3. (a) The hyperbola  is drawn below.

(i) What are the coordinates of A and B?

(ii) What is the distance OA?
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(b) The hyperbola is now rotated anticlockwise through an angle of 45!.

(i) Sketch the graph.

(ii) What are the coordinates of  and , the image points of A and B?

(iii) What is the equation (eq.1) of the rotated graph?

(c) Rotate the image through a further 45!. 

(i) Sketch the graph.

(ii) What are the coordinates of  and ?

(iii) What is the equation (eq.2)?

(d) Rotate the graph of eq.2 through another 45!.

(i) Sketch the graph.

(ii) Write its equation (eq.3).

(iii) Write the equations of the asymptotes.

4. Match each of the equations below to one of the following six graphs:
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For your interest only. You do not have to learn this.

In the last few sections, have you noticed similarity between the equations to the curves? 
Let’s have a brief look at a few of these again:

Circle 

Ellipse 

Hyperbola 

Parabola 

This similarity has been known for a few thousand years. Appolonius of Alexandria wrote 
about these curves in his book Conic Sections in about 200 BC. In the figure below you can 
see two cones and by cutting these cones through different sections, you can obtain the 
4 ‘conic sections’

(Source: http://zebu.uoregon.edu/~js/glossary/conic_sections.html)
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That’s the end of this module. Hopefully you have increased the number of tools in your 
mathematical toolbox, and you can start to see you have a choice in which tool to use in 
solving many mathematical problems.

Before you finally finish you should do a number of things:

1. Have a look at your action plan for study. Are you still on schedule? Do you need to 
contact your tutor to discuss any delays or concerns?

2. Make a summary of the important points in this module, noting your strengths and 
weaknesses. Remember this can be used when you create your summary sheet you can 
bring into the examination.

3. Practise some real world problems in ‘A taste of things to come’.

4. Check your skill level by attempting the post-test.

5. When you are ready, complete and submit your assignment.

5.5 A taste of things to come

Planetary motion

When investigating conic sections, one important point to be considered is the focus. Consider 
the ellipse. We can draw an ellipse by taking a piece of string and attaching the ends to two 
pins. Then take a pencil and, keeping the string taut, draw an ellipse. 

Figure 5.62:  Drawing an ellipse using pencil and string

The points of the pins are called the foci of the ellipse (one point is a focus). If we put the 
ellipse into the Cartesian co-ordinate system, the standard form of the equation to the ellipse 

will be  where a is the length of the semi major axis and b is the length of the 

semi minor axis of the ellipse. The distance c from the centre to a focus is called the focal 

length where c2 = a2 – b2 (Pythagoras theorem). Then the coordinates of the foci F1 and F2 will 

be (–c, o) and (c, o).

F1 F2

2 2

2 2
1

x y

a b
# "
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Figure 5.63:  An ellipse showing the intercepts, foci and axes

Johannes Kepler in the early 17th century discovered three laws related to the movements of 
planets. These were:

• each planet moves in an ellipse with the sun as the focus;

• the radius vector sweeps out equal areas in equal times; and

• the square of the period of revolution about the sun is proportional to the cube of the semi-
major axis of the orbit.

We will have a look at the second law when we study module 6. But let’s take a closer look at 
the other two laws.

(i) The earth travels in an elliptical orbit around the sun. The distance from the centre of the 
ellipse to the vertex is 148 million kilometres, and the focal length is 2.47 million 
kilometres. What is the equation of the ellipse?

(ii) From Kepler’s third law we can state:

, where  is the period of revolution and a is the semi major axis of orbit. (  is the 
Greek letter tau, pronounced as rhyming with how). In the case of the earth,  is 1 year. A 
unit that is quite helpful here is the astronomical unit measuring is 148 million kilometres 
(i.e. the average distance from the earth to the sun – the semi major axis of orbit). So we 
have:

We can use this relationship to find the period of revolution of other planets.

If Mars was on average 225.6 million kilometres from the sun, what is its period of 
revolution?

(iii) If Uranus has a period of 84.02 years, an average, how far is it from the sun?

x

y

0

(0, )b

c

b a

( ,0)a( ,0)c

(0,- )b

(- ,0)a

F1 F2

3

2ca !   
 

3

2

3

21 1

1

ca

c

c

 !

! "

!
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Investigating other curves and their equations

Let’s investigate an array of other curves you may not have come across before. Some of these 
curves are expressed parametrically. What you should do, is to graph them on Graphmatica 
and then change the parameters to see the effect. You should then be able to transform some of 
them using the rules in the previous sections.

The equation below creates the figure of a top as seen in figure 5.64:

Figure 5.64:  Graph of 

Enlarge the shape of the top by changing the constant (similar to the circle enlargement). 

Figure 5.65 comes from the equation .

Figure 5.65:  Graph of 

Create an equation that moves the top horizontally and another that moves the top vertically.

If we want to move it horizontally one unit to the right, the values of x change so the equation 

now becomes , as seen in figure 5.66.

2

3
2

x
y

y
# !
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3
2
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y

y
# !

x

y
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3
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y

y
# !
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4
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y

y
# !
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3
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2
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If we want to move it vertically two units up, the values of y change and the equation becomes 

, as seen in figure 5.66.

Figure 5.66:  Graphs of  and 

Figure 5.67 depicts a rosette. The parametric equations (using 0 to  domain) are: 

Figure 5.67:  Graph of a rosette

Translate it so the new rosette has its centre at ($2,7).

To move it the new equation becomes:

2

3
( 2) 2

( 2)

x
y

y
# $ !

$

2

3

( 1)
2

x
y

y

$
# !

2

3
( 2) 2

( 2)

x
y

y
# $ !

$

x

y
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2

4

2%

7cos 7cos7

7sin 7sin 7

x t t

y t t

! #

! $

x

y
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-

-
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( 2) 7cos 7cos7
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Figure 5.68:  Graph of rosette with centre ($2,7)

5.6 Post-test

1. A rescue boat is 10 nautical miles from port at a bearing E 30& N (i.e 30º North of East). It 
receives a message from port to go to the aid of a yacht stranded 25 nm NW of port.

(i) Taking the positive direction of the x-axis as due East, write the polar coordinates of 
the rescue boat (R) and the yacht (S).

(ii) Write R and S as position vectors in component form.

(iii) Find the displacement vector, RS, giving the answer in polar form.

(iv) What does this displacement vector represent in practical terms?

2. Write the equation 

(i) in vector form

(ii) in parametric form.

(iii) two points P(2, 2.5) and Q($2, $3.5) are on the line. Find the mid-point of segment 
PQ.

3. P is the point ($3, 4).

(i) Reflect P in the line y = x. (Pa)

(ii) Translate the point P two units to the right and six units vertically downwards. (Pb)

(iii) Rotate P anti-clockwise through an angle of 90&. (Pc)

x

y

-20 -15 -10 -5 5 10 15 20

-10

0

10

20

2 3 1y x! $
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4. What type of transformation has been used to change figure A to figure B in each of the 
following:

(a)

(b)

(c)

(d)

y

x

0 2 4 6 8 10 12

2

4

6

8

10

12

B

A

x

y

-2 0 2 4

2

4

6

A

B

x

y

-4 -2 0 2 4

-2

2
B

A

x

y

-6 -4 -2 0 2 4 6

-1

-0. 5

0. 5

1
B

A
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(e)

(f)

5. One measure used to avoid air collisions is to fly aircraft travelling in opposite directions 
at different altitudes. A further safety measure for our highway-in-the-sky is the use of 
radar. If a Boeing 747 sets its radar to pick up other aircraft within a 50 nm radius, what 
Cartesian equation should be programmed into the radar?

x

y

-3 -2 -1 0 1 2 3

2

4

6

AB

x

y

-8 -6 -4 -2 2 4 6 8

-5

0
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Module C5 – Analytical geometry – representing points and curves

5.7 Solutions

Solutions to activities

Activity 5.1

1. Polar coordinates in terms of (r, )

2.

Activity 5.2

1. Conversion sequence for Casio fx-115: 

'

M 3 45&() * or 3
%
4
---(+ ,

- .  or 3 405&() *

N 2.5 180&() * or 2.5%) * or 2.5 180&–() *

Q 4 225&() * or 4
5%
4

------(+ ,
- .  or 4 135&–() *

P 1 300&() * 1
10%

6
---------(+ ,

- .  or 1 60&–() *(

[x-value] [inv] [R P] [y-value] [=] gives 

[X Y] gives 

r

'
/

0
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(a)

(ii)

(c)

2.  (a) Conversion formulae: 

(b) Sequence for Casio fx-115: 

2 2

1

(i) ( 1) (1)

2

1
cos

2

135 ( 1,1) ( 2,135 )

r

' $

! $ #

!

$
!

! & $ ! &

y 0.5–) *2 1–) *2+=

 1.25 1
1

4
---

5

4
---

5

4
-------

5

2
-------= = = 1.121= =

' 0.5–

1.25
--------------+ ,

- .cos 1–=

 243.43....  (since its in the 3rd quadrent)=

 243.4&1 0.5 1–(–) * 1.12 243.4&() *=

(iii)          0.2 (by inspection) 

90 ( "       "        )          (0,0.2) (0.2, )
2

r

%
'

!

! & !

(i)   (3,4) (5,53 )1 &

(ii)  (1, 3) (2,60 )! &

cos sinx r y r' '! !

(i)  ( , ) (3,30 ) 3cos30 , 3sin 30

3 3
or   2.6, 1.5

2

r x y

x x y

' ! & 2 ! & ! &

2 ! 1 !

(ii)  ( , ) (2,89 ) 2cos89 , 2sin89

0.0349, 1.9997

r x y

x y

' ! & 2 ! & ! &

2 1 1

4 4 4
(iii)  ( , ) (1, ) cos , sin

3 3 3

3
0.5,   or  0.866

2

r x y

x y y

% % %
' ! 2 ! !

2 ! $ ! $ 1 $

[radius] [INV] [P R] [angle] [ ]  (displays  value)

[X Y]  displays  value

x

y

/ !

0

(i)  (1.5,3 )  ( 1.5,0) remember to work in RADIANS on your calculator% 2 $

(ii)  (2, 120 ) ( 1, 1.732) remember to change back to DEGREES!$ & 2 $ $
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Activity 5.3

(Remember: Vectors have both MAGNITUDE and DIRECTION)

Distance is a measurement without any particular direction and is therefore a scalar.

Time is a measure without direction. It is therefore a scalar.

Velocity is a measure of speed in a particular direction. It is a vector.

The weight and distance are scalars but the force is a vector. Force is a push or pull on an 
object. It has magnitude (usually measured in Newtons) as well as a direction of application. It 
is a vector.

Mass is a measure of the magnitude of an object. It is a scalar.

Acceleration is the rate of change of velocity (a vector) per time-unit. It has both magnitude 
and direction and is therefore a vector.

Since direction has no magnitude it is neither a scalar nor a vector.

Activity 5.4

1. Use the Pythagorean Theorem for magnitude of vectors:

(a)

(b)

(c)

2.

Activity 5.5

1.  (a)

a 52 122+=

 169=  13=

b 3–) *2 12+=

 4=  2=

c 2a–) *2 m–) *2+=

 4a2 m2+=

v x2 y2+=

7 t2 32+=

49 t2 9+=

t2 40=

t 403=

 

 

(squaring both sides)

 

2 103=

a 3, 30&) *=

 3 30&i 3 30&jsin+cos=

 
3 3

2
---------- i

3

2
--- j    2.6i 1.5j+1+=
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(b)

(c)

2.

x-component 

y-component 

Therefore, the wallet is located at .

3. The position vector for point A is  and point B is  

Now to get from A to B we could go from A to the origin and the origin to B:

b 2, 220&) *=

 2 220&i 2 220&jsin+cos=

 1.53i– 1.29j–1

c
2–

0+ ,
- .=

 2i– 0j   or  2i–+=

x

y

-5 -4 -3 -2 -1 0

2

4

7 km

Wallet N

W

2 2

5

7 5

! $

! $

24

2 6

!

!

5i– 2 6j+

OA
3
1+ ,

- .= OB
1–

5+ ,
- .=

  however  so

3 1 4

1 5 4

AB AO OB AO OA

AB OA OB

AB

! # ! $

! $ #

$ $- . - . - .
! $ # !4 5 4 5 4 5

+ , + , + ,

   !    !    !    !    !

   !    !    !

   !
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Activity 5.6

1.  (a)   

Taking the position vector , we move 4 units horizontally and 1 unit vertically t 

number of times. The vector equation becomes:  (we could have 

taken other position vectors).

(b)

2.  (a)

(b)

(c)

4 4

1
1

4

y x

y x

! #

! #

4

0

$- .
4 5
+ ,

4 4

1 0

x
t

y

$- . - . - .
! #4 5 4 5 4 5

+ , + , + ,

4 4x t

y t

! $

!

x

y

-4 -2 2 4

-4

-2

0

2

4
2

1
3

y x= −

3 0 0
        (any position vector located on the line may replace 

2 1 1

x
t

y

- . - . - . - .
! #4 5 4 5 4 5 4 5$ $+ , + , + , + ,

3 (1)

2 1 (2)

x t

y t

!

! $

1
 from (1)

3

1 1
 from (2)

2 2

1 1 1

2 2 3

1 1 1

2 3 2

2
1 (verified)

3

t x

t y

y x

y x

y x

! $

! # $

# !

! $

! $
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(d)

Activity 5.7

1.

s determined by:

its gradient and one point on the line, or

two points on the line

A.  Check the gradient:

3 2
                   (not same gradient)

2 3

A is not the same line.                   

m

6

6

! 7

       (A)

B.  Check gradient:

2
     (same)

3

     Check point, say (0, 1):

0 3 3
     1    (correct for 1)

1 2 1

B is the same line.                       (B)

C.  Check gradient:

     

m

t

m

!

$

- . - . - .
! $ # ! $4 5 4 5 4 5$+ , + , + ,

!
2

(same)
3

     Check point (0, 1):

0 3 6
     2    (correct for 2)

1 2 3

C is the same line.                              (C)

D.  Check gradient:

2
     (same)

3

      Check point (0, 1):

  

t

m

$

- . - . - .
! $ # ! $4 5 4 5 4 5$+ , + , + ,

!

$

0 3 6
   2    [(0, 1) not on line]

1 2 3

D is not the same line.                          (D)

$- . - . - .
7 # $4 5 4 5 4 5$ $+ , + , + ,

2 2
2 1 2 1

2 2

( ) ( )

(1.5 3) (3 1)

20.25 16

36.25

6.02

d x x y y

ST

! $ # $

! # # #

! #

!

1
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2.

3.

4.  Let Joe’s position 

Let Nadia’s position 

Then:

Nadia and Joe are approximately 13.9 km apart.

2 2
3 1 3 1

Q ,
4 2 4 2

13

16

1
13

4

q
- . - . - .0 $ 2 ! # $4 5 4 5 4 5
+ , + , + ,

!

!

"

2 2

( 2 ) (2 )

1 3

( 1) ( 3)

10

3.16

AB b a

i j i j

i j

AB AB

! $

! $ $ #

! $ $

!

! $ # $

!

1

   ! "
"

" " " "

" "

   !

(4,45 )s! ! #"

(10,240 )n! ! #"

2 2

4cos45 2 2

4sin 45 2 2

510cos240

10sin 240 5 3

Distance apart 

(2 2 5) (2 2 5 3)

193.27...

13.9

s

n

s n

- .- .
! ! 4 54 5 4 5+ , + ,

$- .- .
! ! 4 54 5 4 5$+ , + ,
! $

! # # #

!

1

"

"

" "



 Module C5 – Analytical geometry – representing points and curves 5.81

Activity 5.8

1.

(a)

(b)

(c)

(d)

2.

3. Point of intersection of diagonals is the mid-point of each.

The diagonals intersect at the point (2,1).

(2,1) is also the mid-point of OC.

8 C is the point (4,2).

Or you could solve this using simultaneous equations, finding the equations of gradient of 
AC and BC.

Gradient of AC = gradient of OB = –4

1 2 1 2Mid-point theorem: ,
2 2

M M

x x y y
x y

# #
! !

0 5 4 1
, (2.5,2.5)

2 2
ABM

# #- .! !4 5
+ ,

2 4 3 4
, (1, 0.5)

2 2
XZM

 !  " #$ $  % &
' (

1 1 3 6
, ( 1,1.5)

2 2
RSM

   !" #$ $  % &
' (

2
, ,0

2 2 2
GH

g g g g g
M

  !  " # " #$ $% & % &
' ( ' (

3 2 1 0.51 1

0 02 23 3
OM

 

 

" #! " # " #
$ $ $% & % & % &% &! ' ( ' (' (

    !

5 1 2 4
, (2,1)

2 2
ABM

  !" #$ $% &
' (

0 0
(2,1) ,

2 2

2        and    1
2 2

4 2

C C

C C

C C

x y

x y

x y

! !" #$ % &
' (

$ $

$ $

Gradient of AC
y2 2+

x2 5–
-------------- 4–= =

y2 2+ 4 x2 5–) *–=

y2 2+ 4x2– 20+=

y2 4x2– 18+=
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Gradient of BC = gradient of OA 

Now we have simultaneous equations:

Activity 5.9

1.  (a)  (Circle, centre 0, radius 2)

(b)  (Circle, centre 0, radius 1.5)

0 2+

0 5–
------------=

2

5
---–=

Gradient of BC 
y2 4–

x2 1+
--------------=

2

5
---–=

y2 4–
2

5
--- x2 1+) *–=

y2 4–
2

5
---x2–

2

5
---–=

y2

2

5
---x2–

18

5
------+=

y2

2

5
---x2–

18

5
------+=

y2 4x2– 18+=

2

5
---x2–

18

5
------+ 4– x2 18+=

2x2– 18+ 20x2– 90+=

18x2 72=

x2 4=

y2+ 18 4 4,– 2= =

2 2 4x y! $

x

y

-2 -1 1 2

-2

-1

0
1

2

2 2 2.25x y! $

x

y

1.5 -- 1-0.5
0
0.5 1 1.5

- 1

1
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2. Circle, centre 0, radius 3

3. Circle, centre (0,0), radius 2.5

Circle, centre (0,0), point (–4,3)

Activity 5.10

1. Smallest circle with radius 1

Middle circle with radius 2 

Largest circle with radius 3

2. Parametric equations: 

3. Given point (5, 7), centre O:

Activity 5.11

1. The point will be reflected in the  

2 2 2

2 2

3

9

x y

x y

! $

! $

2 2 2

2 2

 2.5

 6.25

x y

x y

! $

! $

2 2 2

2 2

( 4) 3 25

           25

r

x y

$  ! $

! $

2 2 1x y! $

2 2 2

2 2

2

4

x y

x y

! $

! $

2 2 2

2 2

3

9

x y

x y

! $

! $

cos ,    sinx r q y r q$ $

(a)  2cos ,   2sin        

(b)  1.5cos .  1.5sin

x q y q

x q y q

$ $

$ $

2 2 25 ( 7)

74  (Polar form)

r

r

$ !  

$

-axisy
1 0 1 1

0 1 3 3

  " #" # " #
$% &% & % &  ' (' ( ' (

1 0 2 2

0 1 4 4

  " #" # " #
$% &% & % &

' (' ( ' (
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2. .

3.  reflects coordinates in the line 

. The coordinates do not change as the point lies on the line.

4. . The transformation is a reflection in the line .

5.

The coordinates of the final image are (-2, 3)

6. (a) (5, –12) is in the 4th quadrant.

x

y

-8 -6 -4 -2 0 2 4 6 8

-4

-2

2

4 (2, 4)(-2, 4)

1 0 30 30

0 1 21 21

" #" # " #
$% &% & % &  ' (' ( ' (

0 1

1 0

" #
% &
' (

.y x$

0 1 3 3

1 0 3 3

  " #" # " #
$% &% & % &  ' (' ( ' (

0 1 4 5

1 0 5 4

 " #" # " #
$% &% & % &   ' (' ( ' (

y x$  

1 0 3 3
 reflection in -axis.

0 1 2 2

0 1 3 2
 Reflected in the line 

1 0 2 3

x

y x

" #" # " #
$% &% & % &  ' (' ( ' (

 " #" # " #
$ $% &% & % & ' (' ( ' (

2 2

1

5 ( 12)

25 144

169

13

cos
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cos 0.384

67.38

r

x

r

 

$ !  

$ !

$

$

$

$

-

-

- .

/

/



 Module C5 – Analytical geometry – representing points and curves 5.85

The polar coordinates are (13, -67.38°).

(b) We can use matrices on the rectangular coordinates or we can use the polar coordinates 
and convert back to rectangular coordinates.

After it has been rotated in an anti-clockwise direction through an angle of 30°, (i.e., the 
new angle will be –67° + 30°) the new polar coordinates will be (13,–37.38°). To convert 
this to rectangular coordinates:

The new coordinates will be approximately (10.33, -7.89)

(c) Rotating this image through a further angle of 60° gives polar coordinates of (13, 23°) 
To convert to rectangular coordinates:

The 
rectangular 
coordinates 
are (12, 5).

(d) Rotating 
the 
original 

point (5, -12) through an angle of 90°, we can use the matrix 

cos

13cos( 37.38 )

10.33

sin

13sin( 37.38 )

7.89

x r

y r

$

$  .

-

$

$  .

-  

/

/

cos

13cos(22.62 )

12

sin

13sin(22.62 )

5

x r

y r

$

$ .

$

$

$ .

$

/

/

cos sin

sin cos

 " #
% &
' (

/ /
/ /

90.cos 90.sin–

90.sin 90.cos

5

12–

5 90. 12 90.sin+cos

5 90. 12 90.cos–sin
=

12

5
=

cos90 sin 90 5 5cos90 12sin 90

sin 90 cos90 12 5sin 90 12cos90

5

12

.  . . ! ." #" # " #
$% &% & % &. .  .  .' (' ( ' (

 " #
$ % &
' (
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Activity 5.12

1.

2.  (a)

(b)

3.  (a) (i)

(ii)

(b)

(c)  is stretched by a factor of 2, so the gradient is halved, i.e. 0.5. Since the line is 

stretched about the line x = 1, the new function is translated one unit to the right. So the 

line  becomes

x

y

-4 -2 2 4
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0
2

4
f x( )

g x( )

x

y

-4

-4

-2
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2 4
0
2

4
f x( )

g x h x( ) and ( )

( ) 2( 1) 1

2 1

g x x

x

$  !

$  

( ) ( ) 2

2 1

h x f x

x

$  

$  

x

y

2 4 6
0

1
f x( )

g x( )

-2
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-1

( ) 0.5 3g x x$  

( ) 3 ( )

3 9

h x f x

x
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Activity 5.13

1.

Point about graph was rotated is on the x-axis and the axis of symmetry, i.e. 

 = (–0.75, 0).

2.  (a)

1
( 1) 3

2

1
2.5

2

y x

x
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$  

x

y
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2
1 1

2

( ) ( ) ( ) 2( ) 3( ) 2 (reflection in -axis)

= 2 3 2 which is a function.
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x x

$  $0 $  !   
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y
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( ) ( ) (for reflection in -axis)

(2 3 2)
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Neither rotations are functions.

(b)  then move it (5,5). The equation now becomes:

3. Given 

(i) Horizontal stretch of factor n

(ii)  is the steeper curve.

(iii) Vertical stretch of factor n

(iv)  is the steeper curve.

Activity 5.14

1.
(i)

(ii) Equation of new function translating 2 units upwards:

(iii)

y x2–=

) *2

2

5 5

10 20

x y

x y y

 $   

$  !  

2( ) = 3 1f x x ,  
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2

2
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= 3 1
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$
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(iv) Under a translation of 1 unit to the left:

(v)

2.  (a) Given: 

+ From the graph

(b) Given: 

From graph

3. Given: 

From the graph  has been translated approximately 1.6 (or ) units to the right.

4. Given: 

From the graph  has been stretched horizontally by a factor of 1.5.

1
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From the graph  has been stretched vertically by factor 3.

5. (i)

(ii) The graph does not appear to have undergone any transformation as the part of the 
graph in quadrant 1 has been superimposed on the part of the graph in quadrant 3, and 
vice versa.

(iii) Under a translation of 2 units to the right and 1 unit upwards .

(iv)

(v) Asymptotes are the lines x = 2 and y = 1.

Activity 5.15

1.  (a) General equation of circle: 

(b) From the graph: 

(i)

(ii) Enlargement is a stretch in both x and y directions by factor 3

( )f x

( ) 3 ( )

3 cos  

h x f x

x

$
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y
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2. (i) & (ii)

(iii) Equation of the ellipse where a = 1.5; b = 3:

Or you could do it with fractions:

3.  (a) From the graph A4$4(1, 1) and B4$4) 56 5*.

Distance 

(b) (i)

(ii)

(iii)Eq. 1:  or 

x2
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---------
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2
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2
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2 y

3
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2
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y
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2
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2 2
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(c) (i)

(ii)

(iii) Eq. 2: 

(d) (i)

(ii) Eq. 3: 

(iii) Asymptotes: 

4. Equation a matches graph (1)

Equation b matches graph (6)

Equation c matches graph (2)

Equation d matches graph (5) ……..(gradient not as steep as (4))

Equation e matches graph (4)

Equation f matches graph (3)

A ( 1,1) and B (1, 1)77 77$  $  

1
y

x
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x

y

-3 -2 -1 1 2 3
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0

2

2 2
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x y
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Solutions to a taste of things to come

(i)

If you sketched this, you would find the ellipse looks almost circular.

(ii) To find the period of revolution, translate 225.6 million kilometres into astronomical 

units. 

So the Mars year is about 1.881 years.

(iii) Uranus has a period of 84.02 years.

So Uranus is on average 19.19 astronomical units or 2840.12 million kilometres from the 
sun.

2 2

2 2

2 2

148

2.47
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21897.9

21898
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1
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b a c
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Solutions to post-test

1.  (i) Polar coordinates: R $ (10, 30.),   S $ (25, 135.)

(ii) Position vectors: 

(iii) Displacement vector: 

(iv) The rescue boat should steer a course N 64.3. W (equivalent to 154.3. anticlockwise 
from East) and expect to find the yacht at a distance of approximately 29.23 nm.

2. Given: 

(i) Vector form: 

(ii) Parametric form: 

10cos30 10sin30

3 1
10 10

2 2
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1 1
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(iii) Mid-point theorem  

3.  (i) Reflection in line 

(ii) Translation of 2 (right) and 6 (down) 2 Pb 1 ( 3+2, 4 6) = ( 1,  2) ….......Pb

(iii) Rotation of 90. 

4. From the diagram:

(a) Figure A is a circle, centre (10, 3) and radius = 2
Figure B is a circle, centre (3, 10) and radius = 2
+4A could have been reflected about the line y = x to obtain B, or

 B could have been translated 7 units to the left, and 7 units vertically up.

(b) Figure A is a parabola y = (x – 1)2

Figure B is parabola A stretched horizontally by factor 3

The equation of B is 

(c) Figure A is a circle, centre (0, 0) and radius 1.5 2 

A has been stretched horizontally by factor 3, and vertically by factor 2 to obtain B.

The equation of B is 

(d) Figure A is the curve y = sin x
Figure B has been compressed horizontally by a factor 3, i.e., stretched by factor. 
The equation of B is y = sin 3x.

(e) Figure A is the exponential curve, 
B is the reflection of A in the y-axis (x = 0)
B’s graph is .

(f) Figure A is the hyperbola 

B is the rotation of A through an angle of 45. clockwise (other angle rotations may be 
used).

The equation of B is .

5. If the Boeing 744 is within 50 nm radius. Therefore the equation is a circle with a radius 

50 and the centre being the aircraft 

(* Osserman, R. 1995, Poetry of the Universe, Weidenfield & Nicolson, London.)
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