Algebraic Fractions

Study Support USQ Library

Study Support
USQ Library

Can cancelling be used to simplify these expressions?

$$
\begin{array}{cc}
\frac{2 x y}{x^{2}} & \\
\frac{2 x+2}{2} & \frac{2 x+1}{2} \\
\frac{x^{3}+x^{2}+x}{x^{2}+5 x} & \frac{x^{2}+x+1}{x+5} \\
\frac{3 x^{2}+2 x}{x} & \frac{3 x^{2}+2}{x}
\end{array}
$$

What is cancelling?

Cancelling fractions is also called simplifying fractions.

Cancelling is only possible if common factors are present.

	$\frac{6}{10}, \quad$ can this be re-written as a multiplicaion?
$=$	$\frac{2 \times 3}{2 \times 5}, \quad$ we now have a common factor
$=$	$\frac{2 \times 3}{2 \times 5}, \quad$ cancelling the common factor of 2
$=$	$\frac{3}{5}$.

$\frac{6}{10}, \quad$ can this be re-written as a multiplicaion?
$=\frac{2 \times 3}{2 \times 5}$, we now have a common factor
$=\frac{2 \times 3}{2 \times 5}, \quad$ cancelling the common factor of 2
$=\frac{3}{5}$.

$$
\begin{aligned}
& \frac{2 x y}{x^{2}}, \quad \text { there is already multiplication on the top and bottom, } \\
= & \frac{2 \times x \times y}{x \times x}, \quad \text { cancel common factors, } \\
= & \frac{2 \times x \times y}{x \times x}, \\
= & \frac{2 y}{x} .
\end{aligned}
$$

Example 3

Consider this fraction:

$$
\begin{aligned}
& \frac{3 x^{2}+2 x}{x} \\
= & \frac{3 \times x \times x+2 \times x}{x \times 1} \\
= & \frac{x(3 x+2)}{x \times 1} \\
= & \frac{x(3 x+2)}{x \times 1} \\
= & 3 x+2 .
\end{aligned}
$$

USQ

Now consider this fraction:

$$
\frac{3 x^{2}+2}{x}
$$

There is no common factors, thus, No Cancellation Possible
Therefore,
$\frac{3 x^{2}+2}{x}$ is not equal to $3 x+2$

Therefore,
Cancellation possible.

Can the numerator and denominator be written as multiplications?
Consider this fraction first:

$$
\begin{aligned}
& \frac{2 x+2}{2} \\
= & \frac{2 \times x+2 \times 1}{2 \times 1} \\
= & \frac{2 \times(x+1)}{2 \times 1} \\
= & \frac{2 \times(x+1)}{2 \times 1} \\
= & x+1
\end{aligned}
$$

Now consider this fraction:

$$
\frac{2 x+1}{2} .
$$

There are no common factors in the numerator, thus,

No Cancellation Possible Therefore,

$$
\frac{2 x+1}{2} \text { is not equal to } x+1
$$

Example 4

Now consider:

$$
\frac{x^{2}+x+1}{x+5}
$$

There is no common factors, thus,
No Cancellation Possible
Therefore,
$\frac{x^{2}+x+1}{x+5}$ is not equal to $\frac{x^{2}+1}{5}$.
$=\frac{x\left(x^{2}+x+1\right)}{x_{2}(x+5)}$
$=\frac{x^{2}+x+1}{x+5}$.
Therefore,
Cancellation possible.

Further help
usq.edu.au/library

