Overview

This presentation will cover:

- quadratic equations
- solving quadratic equations using the quadratic formula
- finding the number of solutions the quadratic equation will have.

Quadratic equations

Quadratic equations have a general form of

$$
a x^{2}+b x+c=0
$$

where a, b and c are constant terms.
Quadratic equations are used in many disciplines and can be solved by a number of methods.

This presentation will focus on using the quadratic formula.
For a different method, please see the previous presentation on solving quadratic equations using factorisation.

Quadratic formula

If the quadratic equation of the form $a x^{2}+b x+c=0$ cannot be factorised (or if you cannot readily determine its factors), the solutions are given by the formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

The \pm sign means you have to do both the calculations twice (once with the + and again for the -). Thus,

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { or } \quad x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

The quadratic formula will obtain the solutions of any quadratic equation.

Example

Solve $3 x^{2}-15 x+17=9$
Solution: Note that the equation does not match the general form, therefore, we must rearrange the equation.

$$
\begin{array}{r}
3 x^{2}-15 x+17-9=0, \\
3 x^{2}-15 x+8=0 .
\end{array}
$$

Comparing this with the standard form $a x^{2}+b x+c$ we note that $a=3, b=-15$, and $c=8$

Solution (continued)

Now the we have simplified the quadratic equation $\left(x=\frac{15 \pm \sqrt{129}}{6}\right)$ we can do the both the + and - then evaluate each of them. Thus,

$$
\begin{gathered}
x=\frac{15+\sqrt{129}}{6} \text { or } x=\frac{15-\sqrt{129}}{6}, \\
x \approx 4.39 \text { or } x \approx 0.61
\end{gathered}
$$

(Check that each value of x satisfies the original equation.)

Solution (continued)

Substituting the values $a=3, b=-15$, and $c=8$ into the quadratic formula:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-15) \pm \sqrt{(-15)^{2}-4 \times 3 \times 8}}{2 \times 3} \\
& =\frac{15 \pm \sqrt{225-96}}{6} \\
& =\frac{15 \pm \sqrt{129}}{6} .
\end{aligned}
$$

Exercise

Solve $3=x+4 x^{2}$.

Solution

Firstly, you need to rearrange the equation so that is fits the general form of a quadratic:

$$
4 x^{2}+x-3=0
$$

Comparing this with the standard form $a x^{2}+b x+c$ we note that $a=4, b=1$, and $c=-3$.
(Note: this equation could be solved using factorisation. Have a go at factorising and solving this equation and check your solutions with using the quadratic formula.)

Solution (continued)

Evaluating gives:

$$
\begin{aligned}
x & =\frac{6}{8} \text { or } \frac{-8}{8} \\
& =0.75 \text { or }-1 .
\end{aligned}
$$

(Check that each value of x satisfies the original equation.)

Solution (continued)

Substituting $a=4, b=1$, and $c=-3$ into the quadratic formula:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{1^{2}-4 \times 4 \times(-3)}}{2 \times 4} \\
& =\frac{-1 \pm \sqrt{49}}{8} \\
& =\frac{-1 \pm 7}{8} .
\end{aligned}
$$

The discriminant - types of solutions

We have seen that the solutions of any quadratic equation $a x^{2}+b x+c=0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Quadratic equations do not always have two real solutions. The number of possible real solutions depends on the quantity under the square root sign, $b^{2}-4 a c$.
The quantity, $b^{2}-4 a c$, is called the discriminant.

Number of Solutions:

- Two different solutions. When $b^{2}-4 a c$ is a positive number, there are two possible solutions.
- No solution. If $b^{2}-4 a c$ is a negative number, there are no solutions because the square root of a negative number is not defined.
- One solution. If $b^{2}-4 a c$ is zero, the formula gives us

$$
x=\frac{-b \pm \sqrt{0}}{2 a}=\frac{-b}{2 a} .
$$

Thus there is only one solution.

Solution: Question 1

$x^{2}-5 x+6=0$ is already in general form, therefore $a=1$,
$b=-5$ and $c=6$.
Firstly check the discriminant:

$$
b^{2}-4 a c=(-5)^{2}-4 \times 1 \times 6=1
$$

therefore, there are two solutions.

Solution: Question 1 (continued)

Substituting into the quadratic formula gives:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 1 \times 6}}{2 \times 1} \\
& =\frac{5 \pm \sqrt{1}}{2} \\
& =\frac{5-1}{2} \text { or } \frac{5+1}{2} \\
& =2 \text { or } 3 .
\end{aligned}
$$

Solutions: Question 2

Solution: Question 3

$3 x^{2}-2 x+4=0$ is already in general form, therefore $a=3$,
$b=-2$ and $c=4$.
Firstly check the discriminant:

$$
b^{2}-4 a c=(-2)^{2}-4 \times 3 \times 4=-44
$$

therefore, there are no real solutions.

Solution: Question 3 (continued)

Substituting into the quadratic formula gives:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-2 \pm \sqrt{2^{2}-4 \times 2 \times(-30)}}{2 \times 2} \\
& =\frac{-2 \pm \sqrt{244}}{4} \\
& =\frac{-2-\sqrt{244}}{4} \text { or } \frac{-2+\sqrt{244}}{4} \\
& \approx-4.41 \text { or } 3.41 .
\end{aligned}
$$

$2 x^{2}+2 x-30=0$ is already in general form, therefore $a=2$, $b=2$ and $c=-30$.

Firstly check the discriminant:

$$
b^{2}-4 a c=2^{2}-4 \times 2 \times-30=244
$$

therefore, there are two solutions.

Solution: Question 4

$m^{2}=14 m-49$ requires rearranging to be in the general form. Rearranging gives:

$$
\begin{aligned}
m^{2} & =14 m-49 \\
m^{2}-14 m+49 & =0,
\end{aligned}
$$

therefore $a=1, b=-14$ and $c=49$.

Checking the discriminant gives:

$$
b^{2}-4 a c=(-14)^{2}-4 \times 1 \times 49=0
$$

therefore, there is one solution.

Conclusion

This presentation covered:

- the quadratic formula
- using the quadratic formula to solve quadratic equations
- when the equation matches the general form
- when the equation requires rearranging before it is in general form
- finding the number of solutions.

$$
\begin{aligned}
m & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-14) \pm \sqrt{(-14)^{2}-4 \times 1 \times 49}}{2 \times 1} \\
& =\frac{14 \pm \sqrt{0}}{2} \\
& =\frac{14}{2} \\
& =7 .
\end{aligned}
$$

