
Module C3 – Functions and relations

Module
 C3

Functions and relations 3



Table of Contents 
 
Introduction .................................................................................................................... 3.1 

3.1  What are functions? ............................................................................................... 3.2 

3.2 Function toolbox .................................................................................................... 3.8 
3.2.1 Functional notation ........................................................................................... 3.8 
3.2.2 Zero conditions of a function ........................................................................... 3.12 
3.2.3 Average rate of change of a function ............................................................... 3.13 
3.2.4 Continuity ......................................................................................................... 3.15 
3.2.5 Inverse of a function ......................................................................................... 3.16 

3.3 Families of functions ............................................................................................. 3.17 
3.3.1 Polynomial functions ....................................................................................... 3.18 

The constant function ............................................................................................... 3.21 
The linear function ................................................................................................... 3.22 
The quadratic function ............................................................................................. 3.23 
Other polynomial functions ..................................................................................... 3.25 

3.3.2 Exponential and logarithmic functions ............................................................ 3.39 
3.3.3 Rational functions ............................................................................................ 3.47 
3.3.4 Functions over an integral domain ................................................................... 3.57 

3.4 A taste of things to come ....................................................................................... 3.75 

3.5 Post-test ................................................................................................................. 3.76 

3.8 Solutions ................................................................................................................ 3.78 



 Module C3 – Functions and relations 3.1

Introduction

Mathematics means many things to many people. Some believe it is about numbers or 
measurements, others shapes. It is defined in the Macquarie Dictionary (1999) as:

The science dealing with the measurement, properties and relations of quantities, 
including arithmetic, geometry, algebra etc.

But really it is about describing nature. A character in Pearl Buck’s (1892–1973) novel The 
Goddess Abides describes it well,

She had not understood mathematics until he had explained to her that it was the symbolic 
language of relationships. ‘And relationships,’ he had told her, ‘contained the essential 
meaning of life.’

This module of mathematics is about just that. It is about relationships, including a specific 
type of relationship, the function. As we work through the module we will build on your 
previous knowledge of relationships and functions developed either in Mathematics Tertiary 
Preparation Level B or elsewhere. More formally, on completion of this module you should be 
able to:

• demonstrate an understanding of the concept of a function;

• demonstrate an understanding of the concept of continuity of a function;

• use functional notation;

• recognize, describe, sketch and use polynomial, exponential, logarithmic, rational 
functions and functions with a positive integral domain;

• demonstrate an understanding of the inverse of polynomial, exponential and logarithmic 
functions;

• recognize relations that are not functions;

• investigate non-continuous functions; especially those over the integral domain 
(sequences and series);

• understand the concept of a limit; and

• recognize and use arithmetic and geometric sequences and series.
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3.1 What are functions?

The weather is not thought of as being predictable, yet if we think about the science of 
meteorology it is based on very predictable relationships between different variables. The 
measurement of temperature using thermometers is one example of such a predictable 
phenomena. 

Recall at this stage that a mathematical relationship is called a relation and is defined as a set 
of ordered pairs. We can detail a set of ordered pairs in one of four ways:

• a set of paired numbers or characteristics

• a mathematical formula

• a graph

• a written description

Thermometers consist of a fine glass tube filled with mercury, a liquid metal that expands on 
heating and contracts when it becomes cooler, and so moves up and down the tube. The 
distance travelled by the mercury up or down the tube indicates the value of the temperature. 
Thermometers come in all shapes and sizes so the relationship between height of mercury and 
the temperature will be different for different size thermometers.
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Using this knowledge we could generate a relationship for the thermometer above, from which 
we could predict temperature from the height of mercury in the thermometer. This is exactly 
what both Gabriel Fahrenheit and Anders Celsius did in the 1700s when they developed their 
two temperature scales. Fahrenheit developed a scale between 32  and 212 , while Celsius’s 
scale went between 0  and 100 . You could look at your own thermometer at home to see what 
this relationship is (it is different for different thermometers), but if we use the thermometer 
above we would find the following.

We might guess correctly that this relationship is linear and of the form, and would look like 
the graph below.

Figure 3.1:  Graph of temperature and height of mercury
.

In this relation the measurement of temperature is dependent on the height of mercury, so we 
call height the independent variable (or input) and temperature the dependent (or output) 
variable. There is only a single output for each input, so it’s easy to predict a unique 
temperature from the height of mercury. This type of relation is called a function. An easy 
way to see if a relation is a function is to run a vertical line down the graph: if it only ever 
touches the relation at most at one point then the relation is a function.

A function is a relation that takes certain numbers as input and assigns to each a definite 
output number. The set of all input numbers is called the domain and the set of the 
resulting output numbers is called the range.
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In the function above there is only one possible output number for each input number so we 
call it a one-to-one function. We could represent the set of ordered pairs in a one-to-one 
function by this diagram called a mapping. For the example above, using only some of the 
points, the mapping would like this.

The domain of this function is given by , while the range is . Of course 
other thermometers may have different domains and ranges depending on their requirements 
and design.

Below is another weather phenomenon in which height and temperature are related. This time 
standard atmospheric data recorded from weather balloons indicate that there is a relationship 
between height above sea level (m) and air temperature ( C).

Figure 3.2:  Function predicting temperature (degrees C) from height above sea level (m)

In this case temperature can be predicted from height above sea level, so height is the 
independent (or input) variable and temperature is the dependent (or output) variable. For each 
value of the independent variable there is one value of the dependent variable, so the 
relationship is a function. If you ran a vertical line at any point along the relation it would only 
touch at one point, confirming that it is a function.

However, notice the difference between these two types of functions. In the first case, the one-
to-one function, there was a only one output for each input, while if you examine the second 
function around the temperature of –50 C, you can see that this temperature occurs at 
10 000 m and again at 25 000 m. There are two input numbers for the same output number. 
This type of function is called a many-to-one function. Note that you can always pick a many-
to-one function because if you graph the function and then draw horizontal lines across the 
graph they will cut the graph in more than one place. We could represent the set of ordered 
pairs in the many-to-one function above by a mapping, but this would take up a lot of space. 
Let’s just do it for a couple of points.

The domain of this function was  and the range was 
.
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Let’s look at one more example of a weather phenomenon. Temperatures at three different 
towns were recorded at dawn, noon and dusk and displayed by the local newspaper in the table 
below.

If we graph the temperatures it is clear that this type of relation is very different from the two 
above. Without the information which tells us which temperatures were recorded at dawn, 
noon and dusk we cannot predict with any certainty the temperature of a town. Each town 
gives us three alternatives. In this case the independent (or input) variable is ‘town’ and the 
dependent (or output) variable is temperature, but there are three output values for each input 
value. This type of relation is called one-to-many and is not a function. If we represented this 
relation by a mapping we would get something like this.

It is easy to see if a relation is one-to-many and thus not a function by drawing a graph of the 
set of ordered pairs and drawing vertical lines down the graph. If they cut the graph in more 
than one place then it is one-to-many and is not a function. It is of course still a relation. The 
graph of the temperatures below demonstrates this clearly.

Figure 3.3:  Temperatures recorded in Toowoomba, Brisbane and Longreach
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Example

Examine the following relations and decide if they are functions. If they are functions describe 
the type of function. Give reasons for your choice.

Relation
If function, 
what type?

Reason

(1,2), (3,4), (5,–1), (2,7), (–3,1) One-to-one 
function

For each value of the independent variable 
(the first member of the ordered pair), there 
is only one dependent value and vice versa. 
We could draw a graph of this function and 
find that a vertical line touches at most one 
point. We could draw a mapping

 

Many-to-one 
function

For each value of the independent variable 
(horizontal axis) there is only one value of 
the dependent variable, so it is a function 
(vertical line confirms this). However, for 
each value of the dependent variable there 
are at most three values of the independent 
variable. At times a horizontal line cuts the 
graph in three places. Thus the function is 
many-to-one.

 A one-to-many 
relation, thus 
not a function

For most values of q (the input variable) 
there are two values of P (the output 
variable), thus it is not a function.

Biologists were concerned about 
the amount of sodium in the 
blood of wombats. They 
measured the amount of sodium 
in the blood every hour for four 
hours and found that it was 
increasing rapidly every hour.

One-to-one 
function

Only five readings were taken and the 
sodium level is increasing rapidly, that 
means that every sodium reading must be 
greater than the previous reading, so for 
every hour there is only one value of 
sodium…it must be a one-to-one function. 
Draw a mapping to check.

1
3
5
2

–3

2
4
1
7
1

etc.

x

y

-10 -5 0 5 10

-5

5

21 , 1 1P q q$ % # # " "
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Activity 3.1

Examine the following relations and determine whether they are functions. If 
they are functions, describe the type of function and give reasons for your choice.

Relation
If function, 
what type?

Reason

 

 (1,–2), (2,3), (3,0), (1,–4), (–2,3)

Telstra currently charges a 
network access fee of $11.65 
each month and then $0.25 for 
each local call. What is the 
relation between the total 
monthly charge and the number 
of local calls made each month?

(2,3), (5,1), (–1,3), (7,0), (–3,1)

Something to talk about…

Use Graphmatica* to sketch the graph of . Is this graph a function? Is the graph a 
function when the range is restricted to ? How do the domain and range of a relation 
effect whether or not the relation is also a function? Think of some examples to explain the 
effect. Talk with your friends or work colleagues about the examples and include something 
on the discussion list.

*If you are having trouble using Graphmatica go to the instructions in the introductory book.
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3.2 Function toolbox

So we now know what a function is and that they can be described using different methods 
(numbers, words, formula, graphs). We also know that they can come in many different shapes 
and forms. However, before we can go further we need to stop and assess what tools we will 
need to understand particular functions in more detail. Let’s look at some of our tools for 
functional analysis now, Specific examples of each tool will follow in the section Families of 
Functions.

3.2.1 Functional notation

Let’s look at the following function from electronics. 

The current through an electrical circuit is a function of the voltage.

If we call Current (I) and Voltage (V) then more briefly we would say

Current is a function of voltage

'
I is a function of V

'

If the electronics example was represented by the equation , where I is 
measured in amperes and V in volts, then to find the values of the function when  
volts, we could calculate

'
in words we would say

'
‘the value of the function f at 0.385 is approximately 0.004’.

The letter f was chosen to represent function for obvious reasons, but if we have different 
functions using the same independent variable we can choose any letter or symbol we like e.g. 
g(x) or h(x). 

You should have come across this type of notation previously in TPP7182 Mathematics 
Tertiary Preparation Level B or elsewhere. Here are some examples to practice using the 
notation to evaluate functions. Remember do not confuse the brackets in this notation with 
multiplication.

( )I f V$

20.001 0.010I V V$ &
0.385V $ 0.385V $

2(0.385) 0.001 (0.385) 0.010 0.385 0.004I f$ $ ( & ( )
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Example

If , find 

Example

If we are given a function  which is used to predict the time in minutes taken to mow 
a lawn from the capacity (c) of the engine in cubic centimetres, explain the meaning of the 
expressions .

The expressions both look similar because they both involve adding 5. However, in  
we are increasing the capacity of the lawn mower engine by 5 cm3 and then calculating the 
predicted time to mow the lawn.  involves adding 5 minutes to the time taken to mow 
the lawn given a certain capacity (c) of the lawn mower.

Example

Two students were asked to evaluate , for the function . Discuss the 
correctness of the solutions presented below.

Student 1 has not substituted into the function properly. Instead of replacing each x by x + h 
they have just added h to the end of the function.

Student 2 has made the substitution into the function correctly replacing every value of x by 

the value x + h, however the error has occurred because they have expanded  

incorrectly.  is actually . The correct 

solution should be:

Student 1 Student 2

2( ) 2 1f a a a$ # & 2( 1),   ( ),   ( 1),   ( )f f a f a f a h# & &

2( 1) ( 1) 2 1 1

1 2 1

4

f # $ # # (# &

$ & &

$

2 2 2 2

4 2

( ) ( ) 2( ) 1

2 1

f a a a

a a

$ # &

$ # &

2

2

2

( 1) ( 1) 2( 1) 1

2 1 2 2 1

f a a a

a a a

a

& $ & # & &

$ & & # # &

$

2

2 2

( ) ( ) 2( ) 1

2 2 2 1

f a h a h a h

a ah h a h

& $ & # & &

$ & & # # &

( )T f c$

( 5) and  ( ) 5f c f c& &

( 5)f c &

f c* + 5+

( )k x h& 2( ) 2 1k x x x$ & &

2( ) 2 1k x h x x h& $ & & & 2

2 2

( ) ( ) 2( ) 1

2 2 1

k x h x h x h

x h x h

& $ & & & &

$ & & & &

2( )x h&
2( )x h& 2 2 2 2( )( ) 2x h x h x xh xh h x xh h& & $ & & & $ & &

2

2 2

( ) ( ) 2( ) 1

2 2 2 1

k x h x h x h

x xh h x h

& $ & & & &

$ & & & & &



3.10 TPP7183 – Mathematics tertiary preparation level C

Example

If  and , find the following functional combinations, , 

,  and .

Example

When  and , find the value of .

This type of example is called a function of a function. Wherever you see x in the f function 
you replace it by the function g(x).

Example

If  and , by finding the values of  and  show that in this 

special case .

The left hand side (LHS) of the expression is

It is important not to confuse the brackets in the function 
notation with multiplication or division. We cannot multiply 
the left hand side to get fg and x2, because the expression is 
not g times x but rather reads the value of the function at x.

It is important not to confuse the brackets in the function 
notation with multiplication or division. We cannot cancel out 
in the first line, because the expression is not g divided by f 
but rather reads the value of the function at x in each case.

 Insert the function g(x) into the f(x) function

Evaluate the f(x) function, in this case wherever you see x 

replace it by .

( ) 1f x x$ & 2( ) 1g x x$ # ( ) ( )f x g x&

( ) ( )f x g x# ( ) ( )f x g x(
( )

( )

g x

f x

2

2

( ) ( ) 1 1

or ( 1)

f x g x x x

x x x x

& $ & & #

$ & &

2

2

2 2

( ) ( ) 1 ( 1)

1 1

2 or ( 2) or ( 2)( 1)

f x g x x x

x x

x x x x x x

# $ & # #

$ & # &

$ # & # # # # # &

2

2

( ) ( ) ( 1)( 1)

or ( 1)( 1)( 1)

or ( 1) ( 1)

f x g x x x

x x x

x x

( $ & #

& # &

& #

2( ) 1

( ) 1

( 1)( 1)

1

1

g x x

f x x

x x

x

x

#
$

&

& #
$

&
$ #

( ) 1f x x$ & 2( ) 1g x x$ # ( ( ))f g x

2

2

2

( ) 1

( ( )) ( 1)

( ( )) ( 1) 1

( ( ))

f x x

f g x f x

f g x x

f g x x

$ &

$ #

$ # &

$

2 1x #

2( )f x x$ ( )g x x$ ( ( ))f g x ( ( ))g f x

( ( )) ( ( ))f g x g f x x$ $

2

( ( )) ( )

( )

f g x f x

x

x

$

$

$
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The right hand side of the expression is

As the left hand side equals the right hand side and both are equal to x, then we have shown 
that .

Activity 3.2

1. Write in words the meaning of the following mathematical expressions:

(a)

(b)

2. If  find the value of the following:

(a)

(b)

3. If we coil a wire around a piece of metal and then put a current in the wire the 
metal becomes magnetic. Assume that the following function  
measures the strength of the magnetic field produced when the coil of wire 
has n turns. Explain the meaning of the following expressions:

(a)

(b)

4. If  and  find the following functional 
combinations:

(a)

(b)

(c)

(d)

5. If , evaluate .

2

2

( ( )) ( )g f x g x

x

x

$

$

$

( ( )) ( ( ))f g x g f x x$ $

(12) 3f $

( 2) 12.75h # $

2( ) 3 2p t t$ #

(0.5)p

( 2)p m &

( )m B n$

(2 )B n

( ) 2B n &

( ) 2 3p m m$ # 2( ) 4 9h m m$ #

( ) ( )h m p m#

( ) ( )p m h m(

( )

( )

p m

h m

( ( ))p h m

2 2( ) 2 , ( ) 2f x x g x x$ $ & ( ( )) and  ( ( ))f g x g f x
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3.2.2 Zero conditions of a function

Another tool that is important for describing functions involves finding the zero conditions for 
the function. This means 

• finding the value of the function when the independent variable is zero; and

• determining what values of the independent variable causes the function to be equal to 
zero.

In function notation this means doing two things: evaluating  and solving , for all 
values of x. In graphical terms this means finding where the function cuts the vertical and 
horizontal axes.

We will return to this tool soon when we examine families of functions in detail.

Example

The following function is displayed on the graph below. From the graph determine the 
solution(s) to  and evaluate .

Figure 3.4:  Graph of a polynomial function

From the graph we can see that the horizontal intercepts are , thus these are the 
solutions to the equation .

The vertical intercept is , so this is the value of .

(0)f ( ) 0f x $

( ) 0f x $ (0)f

x

y

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-8

-6

-4

-2

2

4

6

8

1and 5x x$ $
( ) 0f x $

( ) 5f x $ # (0)f
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Activity 3.3

For each of the following functions determine the zero conditions.

3.2.3 Average rate of change of a function

When investigating functions it is possible to measure how one variable changes with respect 
to the second or third variable. You might have heard the words speed, velocity, acceleration, 
birth rate, death rate, production rate – these are all words used to describe how one variable 
changes with respect to another.

The quantity that we use to measure how one variable changes with respect to another is called 
the rate of change. In straight lines it is easy to find and is called the gradient or slope of the 
straight line.

Recall that the gradient puts a value on the steepness of a straight line by comparing the 
change in height with the change in horizontal distance.

In function notation, if we have the linear function , which has two points with 
horizontal values of x1 and x2, the rate of change m is

(Note: , is the Greek symbol delta used to mean a change, so that ,x means a change in x.)

1. Find the value of h(0) and the solutions 
to h(p) = 0.

2. Find the value of h(0) and the solutions 
to h(t) = 0.

3. Find the value of P(0) and the solutions 
to P(a) = 0.

p

h(p)

-6 -4 -2 0 2 4 6

-6

-4

-2

2

4

6

t

h(t)

-6 -4 -2 0 2 4 6

-6

-4

-2

2

4

6

a

P(a)

-6 -4 -2 0 2 4 6

-6

-4

-2

2

4

6

( )y f x$

2 1

2 1

( ) ( )change in height

change in horizontal distance

f x f xf
m

x x x

#,
$ $ $

, #
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Figure 3.5:  Gradient of a straight line

It’s easy to determine the gradient or rate of change of a function if it is a linear function 
because linear functions always have a constant gradient or rate of change. Curved functions 
are not so easy because the rate of change of one variable with respect to the other is always 
changing. However we can approximate the process by finding the gradient between two 
points of interest on the graph. We call this the average rate of change of the curve. Using the 
figure below, we have approximated the average rate of change of the curve between the 
points x = –5 and x = –4, by finding the gradient of the straight line connecting these two 
points.

Figure 3.6:  Average rate of change of a curve

The average rate of change for the curve shown between the points (–5, 0) and (–4, 210) will 
be

f(x)

xx1 x2

f(x2)

f(x1)
(x1, f(x1))

(x2, f(x2))

change in height

f(x2) – f(x1) 

change in

distance
x2 – x1

horizontal

x

y

-6 -4 -2 0 2 4 6

-100

100

200

(- 4, 210)
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2 1

2 1

( ) ( )

210 0
            

4 5

            210

f x f xf
m
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$ $

, #
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This means that if we know any two points on a curve we can use them to calculate the 
average rate of change of the function, by calculating the gradient of the straight line 
connecting the points.

Examples of this tool will be detailed when we examine Families of Functions.

3.2.4 Continuity

Let’s look at the functions described by the graphs below.

Figure 3.7:  Some examples of different types on continuity

Graph A is the only continuous function in the group. We can say it is continuous because if 
you try to run your pen along the function you can do so without lifting the pen from the page. 
Try to do that with the other functions and you will find you cannot. Graph A is a continuous 
function while all the other graphs are discontinuous functions. Mathematicians have a 
specific definition for continuity but we will leave that for another course.

Let’s continue to compare the continuity of the functions given. Notice that although Graph A 
and Graph B both have unrestricted domains (exist for all real values), only Graph A is 
continuous. Just because the domain of a function is defined for all real values of x (say) it 
does not mean that the function will be continuous. Breaks in continuity can take many forms. 
Graph B has a jump, Graph C has a break while Graph D has holes. Later in the unit in the 
topic on rational functions we will examine another type of break in continuity.

Graph A
Domain is all real values of x.

Graph C
Domain is all real x except, 

Graph B
Domain is all real values of x.

Graph D
Domain is all real x except, x = –0.5 and x = 2.5
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3.2.5 Inverse of a function

Although finding the inverse of a function is not directly a tool to help us understand the 
characteristics or shape of a function it does help us understand more deeply the nature of a 
function, hence the reason for including it here. But first recall what the inverse of a function 
means.

Let’s return to the thermometer situation, but this time with a large wall thermometer. In most 
instances we would want to find the temperature from the height in the thermometer and use 
the table below.

So we would have  and . If we wanted to change our perspective and 

predict the height on the thermometer from the temperature (the original designers might have 
done just that) we would interchange the output and input variables, so that temperature would 
be the input variable and height the output variable. This function would no longer be f but the 

inverse of f which we would call . In this case we have  and  so 

that  is the inverse of , and  is the inverse of 

. In general  is the inverse of .

If you were to graph both the original function and its inverse you would find that they are 
both functions, with the original function being a one-to-one function. Note however, that not 
all functions have an inverse function i.e. they are not invertible.

Consider what happens when we throw a stone. The stone will rise and then fall following a 
parabolic path.

Height of mercury (H) 
in mm

Temperature (t) in  C
(t = f(H))

0 0

20 10

40 20

60 30

80 40

1000 50

120 60

140 70

160 80

180 90

200 100

(20) 10f ! (160) 80f !

1f " 1(10) 20f " ! 1(80) 160f " !

1(10) 20f " ! (20) 10f ! 1(80) 160f " !

(160) 80f ! 1( )H f t"! ( )t f H!
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Figure 3.8:  Path of thrown stone

The stone is 1 metre in the air at 0.2 of a second and again at 3 seconds, depending on whether 
it is going up or down. As a set of points this would be (0.2,1) and (3,1). If we tried to find the 
inverse of this function we would determine the time from the height. But in this case we have 
two alternatives to choose from at the height of 1 metre the stone could have been in the air for 
either 0.2 seconds or 3 seconds. This means the function is a many-to-one function and that the 
inverse function of the original parabolic function does not exist, since it is a one-to-many.

The inverse of the stone throwing function would actually look like this and is clearly not a 
function.

Figure 3.9:  Inverse of stone throwing function

In general functions must be one-to-one for an inverse function to exist.

3.3 Families of functions

Although functions come in all shapes and sizes many of them can be grouped into similar 
types, you would have come across a number of these types before. For example, linear, 
quadratic, trigonometric, exponential or logarithmic functions are all functions you might have 
encountered previously. Let’s now have a look at some of these in more detail and see if there 
are further differences or similarities between them.

t

h
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3.3.1 Polynomial functions

Wave your hand in the air like you are starting to draw the ABC TV symbol and you have 
probably drawn a type of polynomial function. Polynomial functions are used in a wide range 
of situations. Look at these below.

Let’s look at the algebraic expressions associated with each of the functions above. Do you 
notice any pattern in their form?

Write now in your own words the similarities and differences between the expressions 
represented in the functions above.

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

The total cost, C(x) in dollars, 
of producing x numbers of 
goods, after a very unstable 
season.

The flight path of a piece of 
fruit in the air where P(x) is the 
height in metres and x is the 
time in seconds.

The bending moment, M(x), of 
a beam supported at one end, x 
metres from the support.

The number of eggs, E(x), 
produced by a certain species of 
lizard as a function of lizard 
body weight in grams (x). 

The relationship between height 
of mercury on a thermometer in 
mm (H(x)) and the room 
temperature (x) in degrees 
Centigrade.

The height of mountains T(x) in 
metres as a function of distance, 
x, in kilometres from a certain 
reference point about 250 m 
above sea level.

 

3 2( ) 0.03 1.85 35.57C x x x x! # #

2( ) 4.9P x x! "

2( ) 12.5 3750M x x x! " #

3 2( ) 9.04 32.07 37.55 10.48E x x x x! " # "

( )H x x!

6 5 4 3 2( ) 0.002 0.19 6.41 100.43 728.33 2020T x x x x x x x! " # " # " #
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In summary you might have said something like this.

• The indices of the independent variable are all positive whole numbers or zero.

• The coefficients of the variables or their powers can be either positive, negative real 
numbers or zero.

• The expressions are a sum of a number of terms which involve different whole number 
powers of the independent variable.

The functions we have described are polynomial functions (pronounced pol-ee-no-mee-al). 
The degree of a polynomial is the highest power of the variable. Let’s define a polynomial 
more precisely.

Recall that , by definition, so the last term would be just a0. Do not confuse the notation 
used in the polynomial definition. If a small number is written above the variable as in x2 then 
we would calculate the square of x, but if a small number is written below the variable as in a2, 
then this means that this is just the second number of this type, no further calculations are 
involved. It is just a way of keeping track of similar constants in a large expression.

Example

Which of the following expressions represent polynomial expressions and what is their 
degree?

A polynomial of degree n has the form

where n is an integer greater than or equal to zero and  are any real 
numbers.

1 2 3 2 1 0

1 2 3 2 1 0( ) ......n n n n

n n n nP x a x a x a x a x a x a x a x" " "

" " "! # # # # # # #

0 1 1, ,..... ,n na a a a"

0 1x !

2( ) 2 1P x x x! # "

21q x x x! " # #

3

( )
3

c
f c c! #

5 3 12y x x x"! " #

4 3 3( ) 1g c c c c c! # # # #
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Activity 3.4

Which of the following expressions represent polynomials and what is their 
degree?

Now that you can tell a polynomial function from other functions, let’s have a look at the 
characteristics of polynomial functions and their graphs in more detail. Some of these 
functions will be very familiar to you. Let’s experiment a bit first though.

Expression Is it a polynomial? Degree

 Yes, all indices are whole numbers
2

 No,  is actually , so the power is not a 
whole number

Not applicable

 Yes all indices are whole numbers. Note that 

, and fractional coefficients are 

allowed within the definition

3

 This is not a polynomial because one of the 
indices is negative 1.

Not applicable

 This is a polynomial function because the 
variable has only whole numbers as indices

4

Expression Is it a polynomial? Degree

1.

2.

3.

4.

5.

2( ) 2 1P x x x! # "

21q x x x! " # # x
1

2x

3

( )
3

c
f c c! # 3

31

3 3

c
c!

5 3 12y x x x"! " #

4 3 3( ) 1g c c c c c! # # # #

2 3
12 2h t t

t
! " #

5 2( ) 12 3 2 4r x x x x! # " #

4 3( ) 5 2 12P r r r! " #

4 0.512 5 2y x x x! " #

22
( ) 5 3F w w w

w
! # " $
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Now that you have a general feel of polynomial functions let’s examine some specific 
polynomial functions in detail.

The constant function

These are functions of the form y = 2 or . Do you believe they are actually 
polynomial functions? Compare them with the definition of a polynomial function.

In the case of the constant function the highest power of the independent variable is zero, so 
the function , could really be written as .

The constant function is the simplest of the polynomial functions. Consider the function 
 and think about the following questions.

• What will be the shape of the graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

• What is the rate of change of the dependent variable with respect to the independent 
variable?

• Is it a continuous function?

• Will it have an inverse function?

Sketch the graph of  for a domain of all real values of x on Graphmatica and think 
about its characteristics. The graph you sketch will look like this.

Something to talk about…

The following are all polynomial equations. Sketch them using Graphmatica, thinking about 
their shape and their equations. Use a scale between %4 on the horizontal axis and %8 on the 
vertical axis. The aim is for you to get a feel for the functions, don’t try to do perfect graphs. 
We will come back to that later.

What did you discover about the relationship between the expressions and the shapes of their 
graphs? Share your ideas with the discussion group. Can you make up any more examples? 
You might have to change the grid range on Graphmatica.

2

3

3

3 2

3 2

4 3 2

4 3 2

6 11 6

( 6 11 6)

5 5 5 6

( 5 5 5 6)

y x

y x

y x

y x

y x x x

y x x x

y x x x x

y x x x x

!

!

!

! "

! " # "

! " " # "

! " # # "

! " " # # "

( ) 3f x ! "

1 2 3 2 1 0

1 2 3 2 1 0( ) ......n n n n

n n n nP x a x a x a x a x a x a x a x" " "

" " "! # # # # # # #

( ) 3f x ! " 0( ) 3f x x! "

( ) 3f x ! "

( ) 3f x ! "
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Figure 3.10:  A Constant Function, 

Now we can answer the above questions in turn.

• It is a straight line parallel to the x-axis.

• It will have an intercept of –3 with the vertical axis, because when we put x = 0, the value 
of the function will be –3.

• It will not have an intercept with the horizontal axis because if we try to evaluate 
, we would get the nonsense expression of 0 = –3.

• The rate of change of the function over its entire domain will be zero. We could confirm 
this by calculating m of the straight line connecting the points (1, –3) and (2, –3) 

You might recall that any line parallel to the horizontal axis will have a rate of change or 
gradient of zero. This is an important concept that we will return to later in the module on 
calculus.

• It will be a continuous function because it has no breaks or jumps in the domain given.

• It will not have an inverse because it is a many-to-one function.

The linear function

The next polynomial function you should be very familiar with is the linear function e.g. 

. This function represents a straight line and is a polynomial function of degree 1. 

(Recall ). The function’s general form is , where m is the gradient and c is 

the vertical intercept.

Consider the function  and ask yourself the following questions.

• What will be the shape of the graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

• What is the rate of change of the dependent variable with respect to the independent 
variable?

( ) 3f x ! "

x

f(x)

-6 -4 -2 0 2 4 6

-4

-2

2

4

( ) 0f x !

2 1

2 1

( ) ( )change in height 3 3
0

change in horizontal distance 2 1

f x f xf
m

x x x

"& " " "
! ! ! ! !

& " "

( ) 2 1f x x! #

1x x! ( )f x mx c! #

( ) 2 1f x x! #
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• Is it a continuous function?

• Will it have an inverse function?

Sketch the graph of  for a domain of all real values of x on Graphmatica, think 
about its characteristics.

Figure 3.11:  A Straight Line, 

• It will be a straight line.

• It will have an intercept of 1 with the vertical axis, because when we put x = 0, the value of 
the function will be 1.

• It will have an intercept with the horizontal axis of . This satisfies the equation 
.

• The rate of change of the function over its entire domain will be 2. We could read this 
directly from the equation where m = 2 or we could confirm this by calculating, m between 

any two points on the graph say ( , 0) and (0, 1)

Note that if you were to calculate the gradient for any two points anywhere on the straight 
line then the gradient would be the same. This is a characteristic of a linear function – a 
constant rate of change.

• It will be a continuous function because if has no breaks or jumps in the domain given.

• It will have an inverse function because it is a one-to-one function.

The quadratic function

The general form of the quadratic function, , you have studied before fits 
well with the definition of the polynomial function of degree 2. Although it should be clear 
that the only term that is essential for it to be defined as a polynomial function of degree 2 is 
the term which has the x2 component.

( ) 2 1f x x! #

( ) 2 1f x x! #

x
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2
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, ,  are all polynomial functions of degree two and hence 

are quadratic functions.

Consider the function  and ask yourself the following questions.

• What will be the shape of the graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

• What is the rate of change of the dependent variable with respect to the independent 
variable?

• Is it a continuous function?

• Will it have an inverse function?

Sketch the graph of  on Graphmatica for a domain of all real values of x.

Figure 3.12:  A quadratic function, 

• It will have a parabolic shape with a minimum turning point because the coefficient of the 
x2 is positive.

• It will have an intercept of –4, with the vertical axis because when we put x = 0, the value 
of the function will be –4.

• To find the intercepts with the horizontal axis we have to solve the equation . 

, To do this recall that we either need to factorize the expression or 

use the quadratic formula. Go to module 2 now if you are rusty on these topics. If we 
factorize the expression on the left hand side we get

So the intercepts on the horizontal axis are .
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• This function is a curved shape so the rate of change of the function over its domain will 
be different in different places. We can see this directly from the graph. On the left hand 
side the function is decreasing and we would expect a negative gradient. At the bottom of 
the graph the function does not change and we would expect the gradient to be zero, while 
on the right hand side the function is increasing and we would expect it to have a positive 
gradient. We could confirm this in an approximate way by finding the average rate of 
change between two points on either side of the turning point at the bottom of the graph. 

On the left hand side the average rate of change between  is 

On the right hand side the average rate of change between (1,–3) and (2,10) is

• It will be a continuous function because if has no breaks or jumps in the domain given.

• It will not have an inverse function because it is a many-to-one function.

Other polynomial functions

From the experiments you did on the previous pages it appears that as the degree of a 
polynomial function increases we might get more twists and turns to the function. Before we 
investigate this in detail let’s again draw some graphs using Graphmatica but this time we will 
analyse them in more detail.

Using Graphmatica draw the cubic functions:

What can you tell about the functions from their graphs? (Note it may be useful to use the 
coordinate cursor available under the point menu to find the coordinates of the intercepts and 
the turning points).

1 3
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Figure 3.13:  Graph of three cubic equations

Let’s put a minus sign in front of the three cubic functions and see what happens to the 
functions.

Firstly, draw and compare  with 

Characteristic
   

Degree 3 3 3

Shape

Has no turning points 
(i.e. no local maximum 
or minimum points); 
enters from the bottom 
left hand corner and 
exits at the top right 
hand corner

Has two turning points; 
enters from the bottom 
left hand corner and 
exits at the top right 
hand corner

Has two turning points; 
enters from the bottom 
left hand corner and 
exits at the top right 
hand corner

Vertical 
intercepts

Vertical intercept is 0, 
the value of the constant 
in the function

Vertical intercept is 0, 
the value of the constant 
in the function

Vertical intercept is 1, 
the value of the constant 
in the function

Horizontal 
intercepts

From the graph this is 0 From the graph these are 
0,1

From the graph these are 
–1,1 (all are factors of 1)

Rate of 
change

Changes continually 
from positive to zero to 
positive again (from left 
to right)

Changes continually 
from positive to zero to 
negative to zero to 
positive (from left to 
right)

Changes continually 
from positive to zero to 
negative to zero to 
positive (from left to 
right)

Continuity
Continuous over the 
domain

Continuous over the 
domain

Continuous over the 
domain

Inverse?
It possesses an inverse 
because it is a one-to-
one function

It does not possess an 
inverse because it is a 
many-to-one function

It does not possess an 
inverse because it is a 
many-to-one function

x

y

-2. 5 -2 -1. 5 -1 -0. 5 0 0. 5 1 1. 5 2 2. 5

-1. 5

-1

-0. 5

0. 5

1

1. 5

h(x) = x3 – x2 – x + 1 f(x) = x3 g(x) = x3– x2

3( )y f x x! ! 3 2( )y g x x x! ! " 3 2( ) 1y h x x x x! ! " " #

3( )y f x x! ! 3( )y F x x! ! "
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Figure 3.14:   

What did you notice? You might have said that the graphs were identical except in two 
characteristics. In terms of the shape F(x) enters from the top left hand corner and exists from 
the bottom right hand corner. The rate of change goes from negative to zero to negative again.

Try doing the same to the other two cubic functions yourself.

Alright, you now have a feel for what happens to the function. Let’s have a look at some 
polynomial functions in more detail expanding our algebra along the way.

Technique 1: Understanding the shape of a graph from its equation

We know that the function,  will look like  while the function  

will look like , but how can we tell this from their equations. In this example the 

coefficient of x3 the gives us the clue, but in more complex examples it is not always so 
transparent. Let’s look at this simple case first.

Find some values of f(x) when x gets very big.

The bigger x gets, the bigger the value of the function gets. This is because the value of the 
function is dominated by the x3 term. We might have expected this because any positive 
number cubed will produce another positive number.

What happens to f(x) when x gets very small.

The smaller x gets, the smaller the value of the function gets. This is again because the 
function is dominated by the x3 term. We might have expected this because any negative 
number cubed will produce another negative number.

3 3( ) and ( )y f x x y F x x! ! ! ! "
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What we are really considering here is the value of the function as x approaches positive 
infinity ( ) or negative infinity ( ). When we translate from words to symbols, we might 
say that

As x approaches infinity the value of the function approaches infinity

'

as 

'

As x approaches negative infinity the value of the function approaches negative infinity

'

as 

Example

Consider the functions  and , what happens 
when x gets very large or small (i.e. as x approaches )?

Consider , when x gets very large (i.e. as ). This function involves 
x to the power three so we might expect this to produce a large positive number, because the 
cubic power will dominate the value of the expression. Note that  
which confirms that the value is very large. So as .

When x gets very small (i.e. as ), the value of the x3 term will dominate and the 
function will approach a very small number i.e. approach negative infinity (note 

). So as .

Consider  when . Because of the negative sign in front of the 
entire function it will be opposite to h(x) and approach negative infinity. When  the 
function will approach positive infinity.

So as  and as .

(Note that calculating some large and small values of the function or sketching the graph 
should confirm these conclusions.)

Example

How does  behave as ?

To get a feel for the value of the function when x approaches positive and negative infinity, 
evaluate g(x) for x = 1000 (say) and x = –1000.

 and 

You might have expected this result because x4 will dominate the value of the function and any 
number raised to the fourth power will produce another even number. So in conclusion,

(check your answer by drawing the graphs on Graphmatica)

( "(

, ( )x f x)( )(

, ( )x f x)"( )"(

3 2( ) 1h x x x x! " " # 3 2( ) ( 1)H x x x x! " " " #
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Example

Examine the polynomial function , what happens when 
x gets very large or very small?

When x gets very large we are considering the value of the function as x approaches positive 
infinity. Because we are working with a function that involves x to the power five we might 
expect this to produce another large positive number. If we evaluate f(1000) we find that it is 
equal to 996 988 987 002 024, which confirms our belief.

When the function gets very small we are considering the value of the function as x 
approaches negative infinity. Because we are working with a function that involves x to the 
power five we might expect this to produce another large negative number. If we evaluate f(–
1000) we find that it is equal to –1 002 989 013 001 980, which confirms our belief.

Activity 3.5

For each of the functions below, investigate what happens when x gets very large 
and very small, i.e. what happens at the function’s extremities.

1.

2.

3.

4.

5.

Technique 2: Factorizing polynomial functions

In order for us to be able to find the horizontal intercepts of a polynomial equation we need to 
have a technique for solving these equations. When we work with quadratic functions 
(polynomial functions of degree 2) we used two methods, factorizing and the quadratic 
formula. Unfortunately finding the roots of general polynomial functions is not so 
easy…..there is not a last stop formula. However, we can solve some functions by using our 
knowledge of the meaning of a solution to an equation.

5 4 3 2( ) 3 11 13 2 24k x x x x x x! " " " # #
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Recall that if a value of the independent variable satisfies an equation then it is a solution to 
the equation. So if we make a guess at some possible solutions we can then check to see if we 
are correct. Let’s try it for a simple quadratic equation.

Consider the function . The horizontal intercepts occur when , so we 

have to solve the equation . We would expect to get at most two solutions 

because to get the x2 term we would have to have two factors of the form x – a and x – b. We 
could guess that a possible solution might be %2 or %1. We picked these numbers because they 
are the factors of the constant term, –2.

If we evaluate the following, what happens?

From this we can conclude that only 1 and –2, are solutions to the equation. This means that
x = 1, and x = –2. If we rearrange these we get x – 1 = 0 and x + 2 = 0. These are the factors of 

, this means that .

The method we use here can be used to solve any polynomial equations. In general we might 
say the following.

Example

Find the solutions of .

Try solutions that are factors of –6. Note we would expect to find at most three solutions, 
because to get the x3 term in the expression we would have to have at most three factors of the 
form x – a, x – b and x – c.

A bit of history…

A mathematician Girolamo Cardano published the solution of the cubic equations in 1545. 
This is considered the greatest achievement in algebra since the Babylonians (he must have 
thought it fairly important since he wrote at the end of the article ‘Written in five years, may 
it last as many thousands’).

After this mathematicians had been trying to find an algebraic solution for higher degree 
polynomials until a Norwegian mathematician Niels Hiel proved that it was impossible for 
fifth and higher degree equations. The consequence is that we use other methods to find the 
solutions.

Dunham, W 1991, Journey through genius, Penguin Books, NY.

If P(x) is a polynomial function and P(a) = 0, then x – a, is a factor of P(x) and x = a is a 
solution to P(x) = 0.
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Possible solutions are #2, #1, #3, #6. By this guess and check method we get;

The solutions are x = –1, x = 2, x = –3. Note that after you get three solutions there is no need 
to check further as this is the maximum number for a 3rd degree polynomial equation.

Example

What are the factors of the polynomial expression, ?

Before we find the factors we need to find the possible solutions to the equation, 

.

Possibilities would be #1, #2, #3, #5, #6, #10, #15, #30. This is a lot of numbers to try, 
practicalities suggest that we would start with the smallest, easiest to calculate numbers first.

From these calculations we can see that the solutions are .

The factors of the expression would be .

You could check the correctness of the answer by expanding the factors to get the original 
expression. 

x f(x)

1 –8

–1 0

2 0

–2 4

3 24

–3 0

6 252

–6 –120

Possible solutions Value of function

1 16

–1 36

2 0

–2 28

3 –12

–3 0

5 0

3 24 11 30x x x" " !

3 24 11 30 0x x x" " !  

2, 3, 5x x x  "  
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Activity 3.6

1. Factorize the following polynomial expressions:

(a)

(b)

(c)

(d)

(e)

2. Find the solutions of the following polynomial equations:

(a)

(b)

(c)

(d)

(e)

Let’s now use some of these techniques to make some generalizations about polynomial 
functions.

However, before progressing further use Graphmatica to draw  for 
all real values of x, think about its characteristics and ask yourself the following questions.

• What will be the shape of the graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

• What is the rate of change of the dependent variable with respect to the independent 
variable?

• Is it a continuous function?

• What happens when the independent variable gets very large or very small?

• Will it have an inverse function?

2 7 12x x! !
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3 2 25 25x x x! " "

3 22 2a a a! " "
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Figure 3.15:  

Now we can answer each of the above questions in turn.

• Functions to the power 2 had one turning point, those to the power 3 had at most two 
turning points so we would expect this function to have at most 3 turning points. The 
positive coefficient means that it will start in the top left corner of the graph and exits at 
the top right hand corner.

• It will cut the vertical axis at , which is the value of the function at x = 0. Note 
that this is the constant on the right hand side of the function expression.

• It appears to cut the horizontal axis at 4 places . These are the solutions 
to the equation .

• The function appears to have 3 turning points where the rate of change would be zero or 
stationary. Between those points the rate of change goes from negative to positive, then to 
negative then finally positive. We could confirm this by evaluating the average gradient of 
the straight line connecting two points on the function in these regions.

• The function has no jumps or breaks and is continuous as are all polynomial functions with 
a domain of all real x.

• When x gets very large (approaches infinity), because the function is a polynomial of 
degree 4, it will approach positive infinity. When x approaches negative infinity the 

function will still approach positive infinity. .

• It is a many-to-one function so will not have an inverse function.

Now use Graphmatica again to draw  for all real values of x, think about 
its characteristics and ask yourself the following questions.

• What will be the shape of the graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

• What is the rate of change of the dependent variable with respect to the independent 
variable?

• Is it a continuous function?

• What happens when the independent variable gets very large or very small?

• Will it have an inverse function?

4 3 2( ) 7 6f x x x x x ! " " !
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Figure 3.16:  

You can now answer each of the above questions in turn.

• The degree of the function is 5 so we would expect it to have at most 4 turning points. The 
positive coefficient indicate that it will enter in the bottom left hand corner and exit at the 
top right hand corner.

• It will cut the vertical axis at , which is the value of the function at x = 0. Note that 
this is the constant in the right hand side of the function expression.

• It appears to cut the horizontal axis at 5 places . These are the solutions 
to the equation .

• The function appears to have 4 turning points where the rate of change would be zero or 
stationary. Between those points it changes from positive to negative to positive, then 
negative then finally positive. We could confirm this by evaluating the average gradient of 
the straight line connecting two points on the function in the different regions.

• The function has no jumps or breaks and is continuous as are all polynomial functions with 
a domain of all real x.

• When x approaches infinity, because the function is a polynomial of degree 5, we would 
expect it will approach positive infinity. When x approaches negative infinity the function 
will approach negative infinity. .

• The function is a many-to-one function and will not have an inverse.

Now you have examined a range of polynomials from the constant function through to the 
higher order polynomials above. Think carefully about what you have seen and write some 
generalizations about the behaviour of polynomial functions.

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________
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In summary you might have said something like this:

• All polynomials will have one vertical intercept. This is calculated by finding the value of 
the function at x = 0.

• If a polynomial has an even degree of n, it will cut the horizontal axis between 0 and n 
times. If it has an odd degree than it will cut the horizontal axis between 1 and n times. The 
values of these intercepts are found by solving the equation .

• The average rate of change of a polynomial function of degree n will vary continually 
within the function which can have up to n – 1 turning points.

• All polynomial functions are continuous in the real domain. They will approach  
depending on the degree of the function and the coefficient of the variable with the highest 
power.

• Most polynomial functions are many-to-one functions and will not have inverse functions. 
Some polynomials such as linear functions and special cases of higher order functions 
such as  are one-to-one functions and will thus have an inverse function.

You may like to look over the polynomial functions and see if you can see these 
generalizations.

Now that we have looked at polynomial functions in more detail and learnt a couple of 
techniques to help along the way, let’s put all this together and investigate some real world 
situations using polynomial functions.

Example

The volume of 1 kg of water varies with temperature according to the formula:

, where V is measured in millilitres and T in (C over 

the domain . Describe the behaviour of the volume of water using a graph and in 
words. Include in your description the average rate of change of volume between 0 and 15(C 
and between 15 and 30(C.

Using Graphmatica when the function is graphed over an unrestricted domain it looks like a 
cubic function we have graphed before, in that volume first decreases then remains stationary 
then decreases again as we have seen in the behaviour of .

Something to talk about…

Using Graphmatica or a graphing calculator is a great tool to help understand polynomials. 
Have you found any short cuts or tricks to help with the process? Or are you having 
problems with it? Have you found any interesting graphs? Contact the discussion group and 
share your ideas with your fellow students. Might help you all when it comes to assignment 
and exam work!
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Figure 3.17:  

However, if we zoom in to see what happens between 0 and 35, the graph looks like this: 

Figure 3.18:  Close up of  between 0 and 40 degrees

This appears linear and parallel to the horizontal axis. However, if we calculate the actual 
average rate of change between 0 and 15 and 15 and 30 we find something different.

We can examine the average rate of change by evaluating 

Even though the graph in this domain looks to be linear, the rate of change has actually 
increased from 0.059 to 0.23 mL/(C, close to four times the original value.

If we zoom in further using Graphmatica (notice the scale on the vertical axis is now 1000 to 
1004) we can see the behaviour of the function in more detail, which confirms the average rate 
of change calculations.
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Figure 3.19:  Close up of  between 1000 and 1004 mL

Example

Population analysts are concerned about the difficulties of life in small country towns and 
have developed a polynomial model to help predict the number of people (in hundreds) in a 
typical town over 10 years. Their model was as follows:

Sketch a graph of the model, including a realistic domain for the function. What is the 
maximum population of the town in this model and what are the meanings of the vertical and 
horizontal intercepts?

Using Graphmatica the graph of the function is below. 

Figure 3.20:  

As populations cannot be negative a realistic domain would be between 0 and 8.4 years. The 
latter figure determined using the coordinate curser on Graphmatica.

The maximum population was about 1200 people after 1 year of operation. Another peak 
occurred at about 7.2 years after the initial census. The vertical intercept is the number of 
people originally in the town in this case 500 people. The horizontal intercepts represent time 
when the population of the town was zero. Within the realistic domain this occurred about 
8.4 years after the initial census.
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Activity 3.7

1. Graph the following polynomial functions:

(a)

(b)

(c)

What was the vertical intercept of each function? How can you use the 
original equation to find this?

What happens at the extremities for each function?

What effect does the negative coefficient of the highest power have on the 
shape of the function in the third question?

2. Graph the following polynomial functions:

(a)

(b)

(c)

What was the vertical intercept of each function?

What happens at the extremities for each function?

3. Extending what you have done in the last two questions, can you guess what 

the following polynomial function may look like: ?

Where should it cross the vertical axis?

What effect should the negative coefficient of the highest power have on the 
shape of the graph?

Since the function has an even degree, what will happen to it at its 
extremities?

Use Graphmatica to check your hypotheses.

4. Consider the following polynomial function: . 
Without fully expanding the function, calculate the following:

(a) the degree of the function;

(b) where the function will cut the vertical axis;

(c) where the function will cut the horizontal axis.

5. Using the information from question 4, draw a neat sketch of the polynomial 

function:  and then use Graphmatica to check your 

result.
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6. Over a 14 hour period, scientists gathered temperatures during a day and 
found that the fluctuations in temperature could be described using the 
following polynomial function: 

Where T is the temperature in (C and t the time in hours after the first 
measurement at 4 am.

(a) What should the temperature have been at 6 am?

(b) If we were to graph this function, what would be the most number of 
turning points that you would expect it to have, and where should it cut 
the vertical axis?

(c) Draw a graph of the function (think very carefully about what range and 
domain you should use).

(d) Find the times between which the temperature is rising (i.e. the rate of 
change is positive).

(e) Find the times between which the temperature is falling (i.e. the rate of 
change is negative).

3.3.2 Exponential and logarithmic functions

You will have come across exponential and logarithmic functions in your previous studies. 
Module 2 summarizes these briefly. Let’s look at the exponential functions briefly again. 
Simple versions are of the form  or . More complicated versions can include the 
following examples. You might try to graph some of them using Graphmatica, but you will 
have to change the grid range to get a good view of the function.

Time to reassess…..

You are over half way through this module now. How is it going? Now is a good time to 
reassess your action plan for study. Are you on schedule or do you need to upgrade it? You 
may need to contact your tutor if you are having problems keeping to your plan. If you have 
forgotten how to manage your action plan return to module 1 where you will find details. 
The key to success in this unit is keeping on track and keeping in touch with your tutor.

Population growth of rabbits where f is the number of rabbits and
n the number of seasons.

The population growth of Australia, where P is the number of people 
in millions and t is time in years.

*

The time for a cup of coffee to cool, where C is the temperature in 
centigrade and t is time in minutes.

*

The amount of a drug in the body where A is the amount in 
milligrams and t is time since ingestion in hours.
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*If you are uncertain about the meaning of e go to module 2 for an explanation.

An important characteristic of exponential functions is the rapidity of their growth or decay. 
Examination of the average rate of change of an exponential function at different points of the 
function confirms this.

So if the rate of change of the function is so rapid what happens to functions when the value of 
the independent variable gets very large or very small. Think about two different functions 
now,  and . Sketch both graphs on Graphmatica to get a feel for what is 
happening. 

Let’s think about the first function, . You might expect that when x gets very large i.e. 
when , then the value of the function, y, will get very large. Examination of the graph 
and calculation of some values of the function when x = 1000 (say), confirm this trend.

What happens when x gets very small i.e. ? It appears from the graph that the value of 
the function gets very close to 0. Let’s try some values to confirm this.

Figure 3.21:  

The atmospheric pressure p in Pascals varies with the height (h) in 
kilometres above sea level.  is the pressure at sea level.

*

The charge q on a discharging capacitor is related to the time t, where 
 is the initial charge, R the resistance in the circuit and C the 

capacitance

*
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We can see that as x gets very small, the value of the function gets closer and closer to zero or 

symbolically as . We say that the limit of the function, y, as x approaches 

negative infinity is zero or . You might recognize this type of behaviour from your 

previous work on exponential functions. When a variable approaches a value, gets very close 
to it, but does not touch it, we can say that the value is an asymptote of the function. For the 

function , y = 0 or the x-axis is an asymptote.

Confirm for yourself that the asymptote for the function  is also y = 0, because 
.

A further characteristic of exponential functions is the nature of the inverse of its function. All 
exponential functions will have an inverse function because they are one-to-one. You might 
recall that the inverse of an exponential function is a logarithmic function. To prove this 
consider . Recall from your previous studies or module 2 that to find the inverse of a 
function we would interchange the independent and dependant variables. In this case 
interchange the x and y variables, so that the function becomes . To make y the subject 
of the formula, as is usual in most functions, we rearrange the function using our knowledge of 
logarithms. Recall that  is the same as  (if you are unfamiliar with this return 
to the module 2 to refresh your knowledge of the definition of a logarithm and the associated 
logarithmic rules).

Before we complete some examples of the applications of logarithmic and exponential 
functions let’s look at the logarithmic function in more detail.

Logarithmic functions have many applications in science, engineering and economics but by 
far their most frequent application is in scale development. The Richter scale for earthquakes, 
the decibel scale for sound intensity, the pH scale for acidity and the personal wealth scale are 
all based on logarithmic functions. The property of the logarithmic function that is made use 
of is the fact that as the value of the independent variable increases the rate of change of the 
function decreases. This means that large values of the independent variable result in only 
small changes in the value of the dependent variable. Let’s look at the logarithmic function in 
more detail. Graph  on Graphmatica. (recall that ) and ask yourself the 
following questions.

• What will be the shape of the graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

• What is the rate of change of the dependent variable with respect to the independent 
variable?

• Is it a continuous function?

Using the definition of a logarithm or Using logarithmic rules

Recall that 
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• What happens when the variables get very large or small?

• Will it have an inverse function?

Figure 3.22:  

You can now answer each question in turn.

• The graph will have a logarithmic form, and will be undefined for all values of x less than 
or equal to zero.

• To find where the function will cut the vertical axis put x = 0. If you try to calculate 
 on your calculator an error message will appear. The function is not defined for

x = 0, so the function does not cut the y-axis.

• To find where the function cuts the x-axis put y = 0 and solve 

So the function cuts the x-axis at x = 1.

• As the value of the x variable increases the rate of change gets smaller. You can confirm 
this by evaluating the average rate of change connecting the straight line between two 
points.

• From the graph the function appears continuous over the domain x > 0.

• If we investigate the behaviour of the graph as , we find the function appears 
unlimited or approaches infinity. Consider some points.

Use the definition of a logarithm to put in exponential form

Recall that 

x  

As x gets very large (approaches positive infinity) 
the y value also approaches infinity but very 
slowly. We write this as .
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Note that because logarithms are not defined for negative values we cannot find the values 
when .

Because the function is undefined for , it is interesting to investigate what happens to the 
y value as x approaches zero. From the graph it appears that as x approaches zero then y gets 
very small i.e. approaches negative infinity.

This behaviour means that x = 0 (the y axis) must be a vertical asymptote.

• Of course the function is one-to-one function and will have an inverse. As previously 
stated the inverse of  is .

Example

A capacitor is part of an electrical circuit that stores electric charge. The quantity of the charge 
stored (q), measured in micro Coulombs (-C), decreases exponentially over time, t, (seconds) 

depending on the formula . Graph the function on Graphmatica and describe in your 

own words how the stored charge changes over time. Include in your description, values and 
meaning of the vertical and horizontal intercepts (if they occur), estimates of the average rate 
of change and what the horizontal asymptote tells us about the charge.

Figure 3.23:  

The curve drawn above is over the entire real domain but because the function involves stored 
charge over time we would expect the domain of the function to be . The initial value of 
the function occurs when t = 0. If we substitute this into the formula the initial charge stored is 
1 -Coulombs. If we examine the average change in the charge after 0.1 seconds and between 
0.2 seconds and 0.3 seconds we find that the charge is decreasing at a decreasing rate.

x  

As we found before, as x approaches zero then y 
approaches negative infinity or as .
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This will continue on indefinitely because the function has an asymptote at q = 0, and as t 
increases so theoretically q will approach zero. However, in real terms the value of the charge 
would be unmeasurable after about 60 seconds.

Example

The sound pressure level (S) measured in decibels in a room is given by the formula 

, where p is the sound pressure in Pascals. Sketch a graph of the function, 

determine and interpret the vertical and horizontal intercepts (if they exist) and the vertical 
asymptote.

Figure 3.24:  

To determine the vertical intercept p = 0 put in the formula

The function does not intersect the vertical axis and has an asymptote in this position. This can 
be confirmed by evaluating the function for values of p close to zero.
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The horizontal intercept is found by putting S = 0 in the formula

The horizontal intercept is equivalent to 0.00002 Pascals of sound pressure. This is the 
baseline level for the decibel scale for the sound level is zero when the pressure is 
0.00002 Pascals. (This is usually chosen as the reference level as it is the lowest perceptible 
sound pressure for the human ear.)

Activity 3.8

1. It is estimated that the population of Australia has increased by a factor of 6 
since 1894. A mathematical model which would resemble this growth is:

where: t is the time in years since 1894 and P the population in millions.

Using the above mathematical model, find:

(a) The population of Australia in 1894.

(b) The expected population in the year 2010.

(c) When the population of Australia had reached 10 million.

(d) How quickly the population was changing in 1954 and 1955.

(e) Explain the significance of the y-intercept.

2. Experts claim that the world wide web is currently growing exponentially at a 
rate of 20% every year (Lemay,1999). If this claim is true, then a 
mathematical model for the growth of the web might be:

where: N is the number of users in millions.

 the number of current users.

t the time in years from the year 1999.

Use the model to find:

(a) Calculate the average rate of growth in number of users between 1999 
and 2004.

(b) Calculate the average rate of change in the number of users between 2004 
and 2009.

(c) Write a sentence comparing the two average rates of growth.

0

20log(50000 )

0 20log(50000 )

0 log(50000 )

10 50000

1 50000

1

50000

0.00002

S p

p

p

p

p

p

p

 

 ,

 ,

 ,

 ,

 

 

0.01693.2 tP e 

0 (1.2)tN N 

0N



3.46 TPP7183 – Mathematics tertiary preparation level C

3. Radioactive substances decay according to the exponential model:

where: A is the amount of the substance present after t years

 is the amount of the substance originally present.

k is a constant which depends on the material itself.

Radium ( ) has a half life of 1620 years. That means it takes 1620 years 
for one gram of Radium to decay to one half a gram.

(a) Use this information to calculate the value of k if we were to use the 
equation  to model the decay of Radium. 

(b) If 10g of Radium were released inadvertently from a nuclear reactor, how 
long would it take for this amount to break down to 1g?

(c) How quickly would the original 10g be decaying after 5 years?

4. A cancerous cell is known to double every 24 hours. A pathologist isolates 50 
of these cancerous cells and allows them to multiply freely.

(a) Construct a table showing the number of cancerous cells which should be 
present each day for a week.

(b) Draw a graph showing this change in the number of cancerous cells over 
the week.

(c) What mathematical function should describe this change in the number of 
cells?

5. The effectiveness of any voltage amplifier is dependent on the frequency of 
the voltage signals. This occurs in a region of frequencies called the midband. 
The voltage gain in this midband, called the midband gain, is given by the 
expression:

where: G is the midband gain in decibels

 is the output voltage

 the input voltage.

A number of amplifiers were tested, each with a fixed input voltage of 50 mV. 
The resulting output voltages ranged from 50 mV to 200 mV. 

(a) Calculate the midband gain for an amplifier which produced an output 
voltage of 160 mV.

(b) Draw a graph showing the midband gain against the output voltage for 
these amplifiers.

(c) How quickly would the midband gain be changing when an amplifier was 
producing an output voltage between 100 mV and 105 mV?
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3.3.3 Rational functions

In our investigation of functions so far we have looked at functions that you have probably 
seen in your past studies, now let’s look at something completely different. We all know that 
when we drive anywhere the speed we travel at is dependent on the distance travelled and the 
time taken to get there. So if we were to travel 10 kilometres, we could determine the speed 

from the function, . We say that the speed attained is indirectly or inversely related to 

the time taken. If we graph this function on Graphmatica over the domain  we get the 
following shape.

Figure 3.25:  

But what is happening with this function? As you go faster and faster you take less time to 
travel the 10 kilometres. That’s probably self evident. But what are the limits on the function? 
For example, when you drive, can you ever travel so fast that it will take you zero time? 
Probably not in this universe. On the other hand will it take you so long to get there that you 
travel at zero speed (assuming that of course you do leave). In this function when time gets 

very large (i.e. ) speed will get extremely small but can never actually reach zero. We 
say that the limit of the function, S, as time, t, approaches infinity is zero or in symbolic 

notation . We have seen this type of behaviour before in exponential and logarithmic 

functions and called the values that the variables approach but can never reach or touch, 
asymptotes. In this function then, we will have two asymptotes t = 0 and S = 0.

But there is much more to this function than what we have discussed above. You might have 
noticed when you were drawing the graph on Graphmatica that there appeared to be another 
part of the graph in the lower left hand corner of the window. Let’s investigate this in more 

detail by examining the more general function, , for all real values of x. Consider the 

function  and ask yourself the following questions: 

• What is the shape of the graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

10
S

t
!

0t (

10
S

t
!

t

S

-0. 5 0 0. 5 1 1. 5

20

40

60

80

100

120

t )*

lim 0
t

S
)*

!

1
y

x
!

1
y

x
!



3.48 TPP7183 – Mathematics tertiary preparation level C

• What is the rate of change of the dependent variable with respect to the independent 
variable?

• Is it a continuous function?

• What happens when the variables get very large or small?

• Will it have an inverse function?

Sketch the graph of  for the domain of all real values of x on Graphmatica and think 

about its characteristics.

Figure 3.26:  

Well we were right. It certainly looks very different over the real domain from any graph we 
have examined before, in that it comes in two parts and so is not continuous. Let’s go through 
the questions above one at a time so we can get an understanding of the behaviour of this type 
of function.

• The graph is a curve in two parts in diagonally opposite quadrants of the plane. It appears 
to have discontinuities along the axes, when examined over the real domain.

• To find where this function cuts the vertical axis we would put x = 0. If we do this we get 

. We know from previous work that this is one of the operations that cannot be 

performed in real arithmetic and so the expression is undefined. This means that the 
function will never cut the y-axis. There will be a vertical asymptote at this point and the 
function is discontinuous.

• To find where this function cuts the horizontal axis we would put y = 0. If we do this in this 

function we get . Again in the real number system we cannot find a number such that 

when we divide 1 by it we will get zero. Again the function is undefined for y = 0. This 
means that the function will never cut the x-axis. There will be a horizontal asymptote at 
this point.

• The rate of change of the function like most curves changes continually, with no turning 
points as are evident in polynomial functions. In both parts of the function the rate of 
change is negative and the function decreasing. We can confirm this by estimating the 
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average rate of change using the gradient of a straight line connecting two points of the 
function.

. If we do this for the points, 

• From the graph it appears that the function is not continuous over the real domain but has a 
break in the middle. This was confirmed when we attempted to evaluate the vertical and 
horizontal intercepts. The function is undefined for x = 0, y = 0.

• If we investigate the behaviour of the graph as , we find the function approaches 
zero. But how does it do this? Consider some points.

This behaviour means that y = 0 (the x-axis) must be a horizontal asymptote.

To investigate what happens when y gets very large or small it is useful to investigate what 
is happening around the vertical asymptote i.e. what happens as x approaches zero.

Now what happens when y gets very large or very small.

Between points   m
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x  

As x gets very large (approaches positive infinity) 
the y value approaches zero from the positive 
direction i.e. from above the x-axis. We write this 

as 

1 1

10 0.1

100 0.01

1000 0.001

10000 0.0001

–1 –1
As x gets very small (approaches negative infinity) 
the y value approaches zero from the negative 
direction i.e. from below the x-axis. We write this 

as 

–10 –0.1
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–1000 –0.001

–10000 –0.0001
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This behaviour assures us that x = 0 (the y-axis) must be a vertical asymptote.

Note a short cut way to determine the position of the vertical asymptote is to think about 
where the function is undefined. In this case it will be undefined at x = 0, so this must be 
the vertical asymptote.

• The function is a one-to-one function over its domain so it will possess an inverse 
function. Note the domain of the function is all real x except x = 0.

This type of function is called a rectangular hyperbola and is a member of a group of 
functions called rational functions. A rational function has the following form.

Note that functions of the form  are also rational functions because they can be 

rearranged into the correct form.

These functions occur in nature in a variety of forms. Many of them can be described using the 
words inversely or indirectly proportional to a variable, just as speed was inversely 

proportional to time in our first example (we symbolize this by ). Other real world 

examples include the following.

x  

As x approaches 0 from the positive direction y 
gets very large and approaches positive infinity. 
Write this as 

1 1

0.1 10

0.001 1000

0.000001 1000000

–1 –1

As x approaches 0 from the negative direction y 
gets very small and approaches negative infinity. 
Write this as .

–0.1 –10

–0.001 –1000

–0.000001 –1000000

, where p(x) and q(x) are polynomials and where x takes all real values 

except those which make .

Put right hand side of the expression 
over a common denominator of x + 1.
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• Fish tail beat frequency (f) is inversely proportional to length of fish (L) .

• Newton’s Law of Gravitation Force, F, for two different masses ( ), 

 is a rational function with the independent variable, r, being the 

distance separating the masses.

• Boyle’s Law for a gas at fixed temperature says that pressure (P) is inversely related to 

volume (V), , where k is a constant.

• Pressure (P) is inversely related to the area (A) over which it is exerted, .

• The resistance in an electrical circuit (R) of constant voltage is inversely related to the 

current (I) in the circuit, .

• The total energy (E) of an electron is related to the square of its distance (r) from the 

nucleus, .

So far we have looked at an example of a rational function that has asymptotes at the x and
y-axes. Let’s have a look at some examples where the asymptotes occur elsewhere.

Example

Examine the behaviour of the function, , include in your answer confirmation that 

this function is a rational function and the exact values of the vertical and horizontal 
intercepts, any asymptotes and a hand drawn sketch of the graph.

To show that this function is a rational function, we have to rewrite the given equation into a 
rational form.

The right hand side of the equation is now written in the form of one polynomial divided by a 
second polynomial so the function is a rational function.

To find the vertical intercept put x = 0.

The function has no vertical intercept and is undefined at x = 0. This means that x = 0 must be 
the vertical asymptote.
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To find the horizontal intercept, put y = 0.

The horizontal intercept is x = –2.

To find the vertical asymptote of the function, consider where the domain of the function will 
be undefined. We know this from our previous attempts to calculate the vertical intercept, but 
to confirm the accuracy of it try a few points when y gets very small and large.

To find the horizontal asymptote investigate what happens to the function when x gets very 
large or small. We could try some points to see what happens.

It appears that as x gets very large or very small the value of the function approaches y = 1. 
This must be the horizontal asymptote.

Using this information and our understanding of the general shape of this type of rational 
function we can now sketch the curve.

x  
As x gets very large (approaches positive infinity) 
the y value approaches 1 from the positive 
direction i.e. from above the line y – 1 = 0. 

We write this as .

10 1.2000

100 1.0200

1000 1.0020

10000 1.0002

–10 0.8000 As x gets very small (approaches negative infinity) 
the y value approaches 1 from the negative 
direction i.e. from below the line y – 1 = 0. 

We write this as 

–100 0.9800

–1000 0.9980

–10000 0.9998
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Figure 3.27:  , with asymptote at y = 1

Check your sketch by drawing it on Graphmatica or plot a few extra points to confirm the 
position of the ‘arms’ of the function.

Example

Examine the behaviour of the function, , include in your answer confirmation that 

this function is a rational function and the exact values of the vertical and horizontal 
intercepts, any asymptotes and a hand drawn sketch of the graph.

To show that this function is a rational function, we have to rewrite the given equation into a 
rational form.

The right hand side of the equation is now written in the form of one polynomial divided by a 
second polynomial so the function is a rational function.

To find the vertical intercept put x = 0.

The vertical intercept is y = –5. Note that this time the vertical intercept exists and the y-axis is 
not an asymptote.
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To find the horizontal intercept, put y = 0.

The horizontal intercept is .

To find the vertical asymptotes of the function, consider where the function will be undefined. 

From the equation  it is apparent that it is undefined when x – 1 = 0 or when x = 1. 

We can confirm this by examining the behaviour of the function around the asymptote.

The vertical asymptote is at x = 1.

To find the horizontal asymptote investigate what happens to the function when x gets very 
large or small. We could try some points to see what happens.

It appears that as x gets very large or very small the value of the function approaches y = –3. 
This must be the horizontal asymptote.

Using this information and our understanding of the general shape of this type of rational 
function we can now sketch the curve.

x
 

As x gets very large (approaches positive infinity) 
the y value approaches –3 from the positive 
direction i.e. from above the line y + 3 = 0. We 

write this as 
10 –2.7778

100 –2.9798

1000 –2.9980

10000 –2.9998

–10 –3.1818 As x gets very small (approaches negative infinity) 
the y value approaches zero from the negative 
direction i.e. from below the line y + 3 = 0. We 

write this as 

–100 –3.0198

–1000 –3.0020

–10000 –3.0002
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Figure 3.28:  , with asymptotes at x = 1 and y = –3

Check your sketch by drawing it on Graphmatica or plot a few extra points to confirm the 
position of the arms of the function.

So far to investigate the behaviour of any graph we have looked at a series of questions, we 
need to add one more question to include the concept of asymptotes.

• What is the shape of the graph?

• Where will it cut the vertical axis?

• Where will it cut the horizontal axis?

• What is the rate of change of the dependent variable with respect to the independent 
variable?

• Is it a continuous function?

• Will the function have any vertical or horizontal asymptotes?

• What happens when the variables get very large or small?

• Will it have an inverse function?

Something to talk about…

Will all rational functions be discontinuous? What about the function  over the domain 

? How will the domain effect the discontinuities of the function? Share you ideas 
with your colleagues or the discussion group.
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Activity 3.9

1. Use Graphmatica to sketch the functions,  and . Compare the 

behaviour and shape of these two functions.

2. In 1650, Robert Boyle discovered experimentally that if the temperature of a 
certain mass of gas is kept constant, then the product of its volume (V) and 
pressure (P) is constant. This is usually written: PV = constant. In an 
experiment 14 mg of nitrogen gas is placed in a container at 271C, and it is 
determined that for this particular gas PV = 1.25, (where the volume is 
measured in and the pressure in ). If the volume of the container is 
varied (in much the same way that the volume in a bicycle pump cylinder is 
varied) and the pressure measured, then the relationship between the two 
should be:

(a) Use Graphmatica to sketch the function .

(b) What restrictions should be placed on the domain if it is to accurately 
represent the above situation?

(c) Use the graph to determine what will happen to the pressure of the gas 
when the volume is made very large?

3. Examine the behaviour of the function, , by answering the following 

question.

(a) Confirm that the function is a rational function.

(b) Find the exact values of the vertical and horizontal intercepts.

(c) Determine the location of the asymptotes.

(d) Draw a neat sketch of the function and confirm your analyses using 
Graphmatica.

4. Examine the behaviour of the function, , by answering the 

following questions.

(a) Confirm that the function is a rational function.

(b) Find the exact values of the vertical and horizontal intercepts.

(c) Determine the location of the asymptotes.

(d) Draw a neat sketch of the function and confirm your analyses using 
Graphmatica.
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5. A variable resistor was placed into a direct current circuit. The resistance (R) 
was varied and the subsequent change in current (I) measured. The magnitude 

of the current (in amps) was found to be given by the function, , where 

R was the resistance, measured in ohms.

(a) Determine the average rate of change of current when the resistance 
changes from 1.9 to 2 ohms.

(b) Determine the average rate of change of current when the resistance is 
changes from 14.9 to 15 ohms.

(c) What domain restrictions should be placed on the above function?

(d) Draw a neat sketch of the function and check your results using 
Graphmatica.

3.3.4 Functions over an integral domain

Functions come in all shapes and sizes. So far we have studied functions with a domain of all 
real numbers, except for rational functions in which specific values of the independent 
variable were undefined. In this section we will look at some special functions which have the 
set of positive integers as the domain.

If you were building a set of rustic stone stairs at home you would stack stones of similar size 
one on top of another to make a stair shape.

The total number of stones used is the sum of the number of stones on each level.

Number of stones is 1 + 2 + 3 + 4 + 5 = 15.

If we wanted to build higher steps, then the next level would have 6 stones and the level after 
that would have 7 stones. We can determine the number of stones to be used by adding one to 
each previous level. So to determine the total number of stones in the stairs we could write this 
as a function , where n is the number of levels.

(Check for yourself that this satisfies the definition of a function stated earlier in this module.)

12
I

R
!

( ) 1 2 3 4 5 6 ......f n n! - - - - - - -



3.58 TPP7183 – Mathematics tertiary preparation level C

The numbers that make up this sum are called an arithmetic sequence, because each level has 
one more stone than the previous level.

In the stone steps example the constant was one, but in other examples any real constant can 
be added to an initial term to generate an arithmetic sequence.

Here are some examples. 

There are two things that are useful to know about arithmetic sequences; how can you 
calculate any term of the sequence and what is the sum of the sequence for any number of 
terms? Let’s look at these two things now.

An arithmetic sequence is a list of numbers in which the terms increase or decrease by 
adding a constant.

2, 4, 6, 8, 10, 12, 14,…… Add 2 to each term

10, 7, 4, 1, –2, –5, –8,…… Add –3 to each term

1, 2.2, 3.4, 4.6, 5.8,……. Add 1.2 to each term

 Add to each term

A bit of history… For interest only

Carl Gauss was a famous German mathematician who lived between 1777 and 1855. He was 
a child prodigy. ‘One day, in order to keep the class occupied, the teacher had the students 
add up all the numbers from 1 to 100, with instructions that each should place his slate on a 
table as soon as he had completed the task. Almost immediately Carl placed his slate on the 
table saying “There it is”. The teacher looked at him scornfully while others worked 
diligently. When the instructor looked at the results, the slate of Gauss was the only one with 
the correct answer, 5050, with no further calculations. The ten year old boy evidently had 
computed mentally the sum of the arithmetic progression, presumably using the formula 

.’ (Boyer 1991). How did he do that? Well nobody knows for certain but it is 

thought that he did the following.

Do not learn this.

(Boyer, C & Merzbach, U 1991, A history of mathematics, Wiley & Sons, New York.)
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If the first term of an arithmetic sequence is  and the constant we would add is d, then the 
second term would be

You might have noticed the pattern that has developed.

We can use a similar algebraic technique to find the sum of n terms of an arithmetic sequence.

Let the sum of the n terms above be, , so that

But, 

It appears that each pairing of the terms gives a sum of . So how many pairs of 
such terms are there?

If there were n terms to start with and we have broken them up into groups of two there must 

now be  pairs. So,

Note that the sum of the terms of an arithmetic sequence is called an arithmetic series, and d 
is often called an arithmetic or common difference.

No need to learn this proof

The nth ( ) term of an arithmetic sequence is given by, , where  is 

the first term and d the constant.

Pair together the first and last terms, the 
2nd and 2nd last terms etc.

And Convince yourself this is correct by 
expanding the brackets on both sides

No need to learn this proof

The sum of the first n terms of an arithmetic sequence is , 
where  is the first term and d the constant.
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Example

Find the 100th term and the sum of the first 100 terms of the arithmetic sequence whose first 
four terms are 6, 3, 0, –3.

The first term of the sequence is 6, so . To find the constant, d, that is added to each term 
subtract the first two terms, d = 3 – 6 = –3. To confirm this, subtract the next two terms,
d = 0 – 3 = –3.

To find the 100th term we can use the formula, , where n = 100, d = –3,  
.

To find the sum of the first 100 terms use, , 

.

So the 100th term is –291, and their sum is –14 250.

Example

An young worker commences work on an annual salary of $25 000 and will receive an annual 
increment of $2500. When will she earn $50 000 per year and what would have been her total 
earnings up to this time.

The worker’s income is increasing by a constant value of $2500 per year, so the income earned 
each year represents an arithmetic sequence. In the sequence .

To find when the apprentice will earn $50 000 per year, find the term which has a value of
$50 000, using the formula for the nth term,  where the nth term is 50 000, 

After 11 years of work the worker will earn $50 000.

To find the total amount earned over this time you need to calculate the sum of 11 terms of the 

arithmetic sequence using the formula .

The total income over 11 years is $412 500.
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Activity 3.10

1. What will be the 52nd term of the sequence: 12, 15, 18, . . . ?

2. On the birth of her nephew, Aunt Beatrice deposited $50.00 in a trust account. 
On his first birthday she deposited $100, on his second birthday she deposited 
$200 and on his third birthday $300. If she continued in this fashion until his 
21st birthday, how much in total will she have deposited in this trust account?

3. Find the sum of the first 20 terms of the following series: 

2 + 8 + 14 + . . .

4. Engineers have estimated that wheel bearings begin to reduce in size very 
quickly when lubrication has failed. In one trial using bearings of radius 
5.000 mm, it was found that in one hour of use the radius decreased by . 
After the second hour of use in the trial the radius decreased by a further 

 and after the third it decreased by .

(a) If this pattern continued in the trial, how much would be removed from 
the radius of the bearing after the 15th hour? 

(b) How long would it take before the wheel bearing is reduced to one half of 
its original size?

5. A step ladder has a number of rungs which decrease uniformly from 600 mm 
on the base to 400 mm on the top (see diagram below). If a total of 3500 mm 
of wood is used to make the rungs, how many are in the ladder?

Now that you are more familiar with the nature of arithmetic sequences and series let’s go 
back and see why we have included these in the section on functions.

Think again about the problem with the stone steps. In the design of this the number of stones 
in each level was part of an arithmetic sequence. The nth term of that sequence is given by the 
formula

, where , so

So the function defining the nth term is . This function is a linear function with a 
restricted domain of all positive integers. It is not a continuous function, but as n increases the 
value of the function approaches infinity. Notice however, that it compares well with previous 
linear functions in that terms of the function are calculated by adding a constant to a previous 
term. The function would look like this.

25 m&

40 m& 55 m&

400 mm

600 mm

1( ) ( 1)a n a n d ! " 1 1,  1a d  

( ) 1 ( 1) 1a n n n ! " %  
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Figure 3.29:  nth term of an arithmetic sequence, 

(the dashed line indicates that the function is not continuous between the points indicated)

If the constant had been a negative number then the function for finding the nth term would 
still be a linear function but the gradient would be negative.

Similarly, we said that the total number of stones was determined by the function 

, now that we know that the sum of n terms of an arithmetic 

sequence is  in this case , so

Notice the structure of the formula for the function. It is a quadratic function with a restricted 
domain of all positive integers. It will have a parabolic shape, with only part of the parabola 
included in the graph. It is not a continuous function, and in this case as n increases the value 
of the function approaches infinity.

A graph of the function would look like this.
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Figure 3.30:  Sum of n terms of the arithmetic sequence, 

(the dashed line indicates that the function is not continuous between the points indicated)

If the constant had been a negative number then the function for finding the sum of n terms 
would still be a quadratic function but the coefficient of the squared term would be negative 
and so the parabolic shape would be inverted.

The stone steps problem involved a sequence of numbers that changed by adding a constant. 
Other sequences can change by multiplying by a constant. For example, we all like to save 
money. If we deposit $3 000 in an account that pays 3% interest per year, compounded 
annually, how much would we have after a period of time. In compound interest investments, 
the interest is calculated regularly on the principal (amount originally invested) plus interest. 
So after year one we would have the original principal plus 3% of that principal. In fact this 
means that we would have 103% of the principal. We can work this out mathematically as 
follows.

 or $3090

We could perform the same calculations over five years as shown in the table below.

Year 0 3000

Year 1  
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Year 3  

Year 4  

Year 5  
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3000(1 0.03) 3000 1.03!  %
2(1 0.03) 3000 (1.03) 3000 (1.03)! % %  %

2 3(1 0.03) 3000(1 0.03) 3000 (1.03)! % !  %
3 4(1 0.03) 3000(1 0.03) 3000 (1.03)! % !  %
4 5(1 0.03) 3000(1 0.03) 3000 (1.03)! % !  %



3.64 TPP7183 – Mathematics tertiary preparation level C

So we again have a sequence of numbers,

3000, , , , , 

We call this sequence a geometric sequence, because each year increases by a constant 
multiple.

Each term is determined by multiplying the previous term by the constant 1.03. Other 
examples of geometric sequence would be:

Again it is useful to know how to calculate any term of a sequence and the sum of the terms of 
a sequence.

If the first term of a geometric sequence is  and the constant multiple, r, then the second term is 

You might have noticed the pattern that has developed.

We can use an algebraic process to find the sum of a geometric sequence.

2, 6, 18, ……. Multiply each term by 3

1, –2, 4, –8, …. Multiply each term by –2

16, 8, 4, ….. Multiply each term by 

2, Multiply each term by 

A geometric sequence is a list of numbers in which the terms increase or decrease by 
multiplying by a constant.

The nth ( ) term of a geometric sequence is given by , where  is the first 
term and r the constant.
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Let the sum of the n terms above be, 

Note that the sum of the terms of a geometric sequence is called a geometric series and r is 
often called the common ratio.

Example

Find the 100th term and the sum of the first 100 terms of the geometric sequence whose first 
four terms are 1, –2, 4, –8.

The first term of the sequence is 1, so . To find the constant, r, divide the second term by 

the first term, . To confirm this divide the next two terms in the same way, 

.

To find the 100th term we can use, , where  

To find the sum of the first 100 terms use, ,

So the 100th term is approximately , and their sum is .

 

Do not learn this proof

Substitute in the formula for each term

Multiply both sides by r, then expand brackets

Add to both sides

Rearrange to put  at front of RHS

Replace grouped terms by 

Make  the subject of the formula

Multiply numerator and denominator by –1

The sum of the first n terms of a geometric sequence is , where  is the 
first term and r the constant multiple.
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Example

A wheat farming couple harvests 1000 tonnes of wheat in their first year on a property. Each 
year their harvest increases by 10% over the previous year. How much will they harvest in 
their eighth year? How much wheat will they have sold altogether in their first eight years on 
the property?

As the increase is 10% over the previous year the weight of wheat harvested each year forms a 
geometric series with a common multiple of 1.10. So to find the amount of wheat harvested in 
the eighth year we need to find the eighth term of the geometric sequence with the first term, 

, and a common multiple, r = 1.10.

The farmers harvest approximately 1949 tonnes in their eighth year.

To calculate the total amount of wheat harvested over eight years we need to find the sum of 

the arithmetic sequence using the formula, 

The farmers would harvest approximately 11 436 tonnes over the eight years.

Activity 3.11

1.  (a) Explain why the following sequence is a geometric sequence.
125, 25, 5, 1, . . .

(b) Find the 10th term of the sequence above.

2. Find the sum of the first 15 terms of the following sequence:
8, 12, 18, 27, . . .

3. Imagine that you have been employed by a rich eccentric to undertake some 
dangerous work for a period of 30 days. Your boss offers you two alternative 
payment options. The first is to receive $1 000 000 in cash at the completion 
of the work, and the second option is a bit more bizarre. In the second option 
the boss will pay you one cent if you last the first day, two cents if you last the 
second day, four cents if you last the third day, eight cents if you last the 
fourth day and so on. Assuming that you make it to the end of the 30 days, 
which option should you take?

4. Scientists observing growth of a bacterial colony, were able to estimate the 
number of bacterium present on three successive days. These are listed 
below:

Time (in days) Number of bacteria ( )

0 20

1 22

2 24.2

1 1000a  

8 1

8 1000 1.10 1948.7171a " %  
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1

n
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11435.8881

1 1.10
S

% "
  

"

1000%



 Module C3 – Functions and relations 3.67

(a) Find the number of bacteria present after 6 days.

(b) Assuming that the bacteria continued to multiply at the same rate, how 
long would it take before their population had doubled?

5. A pendulum is given an initial swing, so that to begin with it reaches a 
distance of 12cm from its central position (see diagram below):

Due to frictional forces, the pendulum will not swing out as far on its second 
swing. Assume that the following measurements were made:

(a) If this pattern were to continue, how far should the pendulum swing on its 
20th swing.

(b) What about after its 200th swing.

(c) Will the pendulum ever stop?

Let’s now see how geometric sequences and series are related to functions.

If we return to the savings question we had the geometric sequence

The nth term can be represented by the function,

.

This function is an exponential growth function with a restricted domain of all positive 
integers. It is not a continuous function and as n increases the value of the nth term approaches 
infinity. Notice that it compares well with previous exponential functions in that terms of the 
function are calculated by multiplying the previous term by a common multiple. The graph of 
the function looks like this.

Swing number Distance from central position (cm)

1 12

2 11.4

3 10.83

12 cm
path of pendulum
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Figure 3.31:  nth term of the geometric sequence, 

The sum of the same sequence of numbers can be generated from the function,

If we graph this function realizing that it has a restricted domain of all positive integers it will 
look like this.

Figure 3.32:  Sum of n Terms of the geometric sequence, 

This function is also an exponential growth function. It is not continuous because of its 
restricted domain but as the value of n increases then the value of the function approaches 
infinity.

What would happen to the size of the nth term and the sum of the terms of a geometric 
sequence if the constant multiple was less than one. Let’s think about the following situation.

Rearrange the formula to put it in a 
more familiar form .
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A bushwalker is lost. He knows that if he walks along the creek, the nearest farm house is 
25 km away. On the first day he walks 12 km, on the second 6 km, on the third 3 km. Will he 
ever get to the farm house?

In this case a sequence of numbers is generated relating to each day of travel.

12, 6, 3, , ,…..

This sequence is a geometric sequence in which the constant multiple is  and the first term is 

12. Using our knowledge of geometric sequences we can find the functions that predict the nth 
term and the sum of n terms.

The nth term, T(n)

Sketch the function for yourself on Graphmatica to get a feel for its shape. Note that it is not 
possible to make it look discontinuous on this package yet. It is an exponential decay function 
with a restricted domain of all positive integers. It will not be continuous and will have an 

asymptote at , which means that as n gets very large the value of the nth term 

approaches zero or .

Let’s now think about the sum of the terms of a geometric series in which the constant multiple 
is less than 1. If the value of the nth term is approaching zero then we might expect that the 
sum of n terms as n gets very large approaches a constant value or a limit. Let’s see. The 
formula for the sum of n terms for the bushwalking situation is:

Notice that it has an exponential-like form. If we sketch it, it will look like this.

This is the more familiar form of 

Evaluate denominator to get , then simplify numerator to 24

Remove square brackets

Notice the more familiar form 
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Figure 3.33:  Sum of a geometric series first term 12 and 

It is not a continuous function because of the restricted domain of all positive integers. It also 
has a horizontal asymptote but not along the horizontal axis. This time the asymptote is at 

. This means that as n gets very large and approaches infinity, the sum of n terms of 

the series approaches a constant value of 24 or in symbolic notation, . This 

means that in theoretical terms the bushwalker would never reach the house 25 km down the 
creek. (Hopefully they will be able to hear him from where he is!)

This result can be applied to all geometric functions with a constant multiple between –1 and 
1. We say

Let’s think about it algebraically.

Now if r is a fraction between –1 and 1, when n approaches infinity then  approaches zero 

e.g. . This means that as n get very large the .

The sum of n terms as n approaches infinity of a geometric series with r between –1 and 

1 is .
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Example

Repeating decimals are rational numbers and so can be rewritten in fractional form. 
Calculators do this. One way that they could do it is knowing that a repeating decimal can be 
written as a geometric series. Using your knowledge of geometric series rewrite the repeating 
decimal 0.12121212…. as a geometric series, find its sum to infinity and thus write the 
decimal as a fraction. Sketch the graph of the function used to calculate the sum of n terms of 
the series to confirm your answer.

The decimal can be rewritten as

This is a geometric series with the first term of 0.12 and the common ratio of 0.01.

The sum to infinity of the series is,

To confirm this answer we need to sketch the graph of the function used to predict the sum of 
n terms of the geometric sequence. It is often easier to do this if it is in a more conventional 
exponential form.

This is now in the more familiar form .
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You might notice that when the function is in this form it is easier to see that if n gets very 

large then the term  will approach zero, so the whole function will approach the 

value of . The graph below confirms this.

Figure 3.34:  Sum of a geometric series, first term 0.12 and 

Example

A child accidentally ingests 20 mg of a medication. Doctors say that 50% of the drug is 
metabolized each day so that after the first day the child has 10 mg after the second day 5 mg. 
Generate a geometric series to represent the situation. If the medication has no effect after it 
reaches 0.039 mg when will the child be virtually free of the medication. Will the child ever be 
absolutely free of the medication?

The geometric series representing this situation is , it has a first term of 
20 and a common ratio of 0.5. The nth term of the sequence can be evaluated by the function 

. If 

The medication will reach an ineffective level after 10 days.
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To find out if the medication will ever entirely leave the child’s body think about what happens 
to the nth term as n approaches infinity. First rearrange the nth term into a more recognizable 
exponential function.

The nth term of the geometric sequences is represented by an exponential decay function, so 
as n gets very large the value of the nth term approaches zero, but does not reach it absolutely. 
The child will never be entirely free of the medication.

Activity 3.12

1. Find the sum to infinity of the following sequence:
125, 25, 5, 1, . . .

2. Express the repeating decimal 0.999..... as a geometric sequence and 
consequently show that its infinite sum is 1.

3. Find the sum of the series: 

4. A person wishes to drain a water tank. The rate at which the water empties 
from the tank depends on how much water is still in the tank. The person 
notes that after 30 minutes the tank is half full, after another 30 minutes it is 
one quarter full, and after a further 30 minutes the tank is one eighth full. If 
the tank continues to leak in this pattern,

(a) how long will it take before it contains one fiftieth of its original volume;

(b) will it ever be entirely empty?

5. The back spring on a car has the shock absorber removed, consequently when 
a pressure is exerted on the spring, it will continue to bounce for some time. 
Engineers, developing these springs, have found that in such circumstances 
the spring will return to a position which is 90% of its position on the 
previous bounce (see diagram below).
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In one experiment, a force was applied to the car, so that it initially rose to 20 
cm above its rest position. 

(a) Complete the following table showing the height above the rest position 
compared with the number of bounces.

(b) If it continues to bounce, how many oscillations will it take before it has 
reached a distance 8 cm above its rest position? 

6. A small child is initially given a push whilst on a swing. On the first complete 
swing, she travels a distance of 2.4 m and then on each subsequent swing she 
travels only 80% of the distance previously travelled.

(a) Complete the following table:

v

(b) How far will she have travelled in total after her 4th swing?

(c) Develop an equation of a function used to predict the sum of n terms of 
this sequence.

(d) Draw a graph showing the total distance travelled against the number of 
swings.

(e) Will the child ever travel more than a total distance of 12 m?

That’s the end of this module. You will have experienced a lot of new algebraic techniques and 
a toolbox of different functions to arm you for your future studies in this unit and later.

But before you are really finished you should do a number of things:

1. Have a close look at your action plan for study. Are you on schedule? Or do you need to 
restructure you action plan or contact your tutor to discuss any delays or concerns?

2. Make a summary of the important points in this module noting your strengths and 
weaknesses. Add any new words to your personal glossary. This will help with future 
revision.

3. Practice some real world problems by having a go at ‘A taste of things to come’.

4. Check your skill level by attempting the post-test.

Number of bounces 1 2 3 4 5 6 7

Height of bounce from rest position (cm) 20 18

swing number 1 2 3

Distance of the swing (m) 2.4 1.92

Something to talk about…

Are all exponential functions geometric sequences or series? Think of some examples for 
yourself and switch between the two forms. Share your opinions with your colleagues or the 
discussion group.
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3.4 A taste of things to come

1. Surveyors use telescopes of one form or another. The purpose of a telescope in this area is 
to create for an observer a picture of the cross-wire’s position on the target with the 
greatest clarity and precision. Optical factors to be considered included resolving power, 
magnification, definition, eye distance, size of pupil and field of view. Two of these are 
discussed below. 

The ability of a lens to show detail is called resolving power. It is measured as the smallest 
angular distance, expressed in seconds of arc, between two points just far enough apart to 
be distinguished as separate objects rather than a blurred one. The maximum resolving 
power that theoretically can be attained with a perfectly made telescope depends entirely 
on the diameter of that part of the objective lens actually used (the effective aperture). The 
resolving power of an objective lens is independent of magnification. It can be computed 
by the empirical formula:

,

where R is the angle that can be resolved, in seconds, and D the diameter of the lens 
aperture in millimetres. For example if the objective lens of a certain telescope has an 
aperture of 30 mm in diameter, its resolving power is about 4.7 seconds. The accepted 
standard for resolving power of a human eye is 60 seconds. See diagram below:

(a) The specification of telescope manufacturers could include a graph describing the 
relationship between resolving power and diameter of the lens. Complete a graph of 
this function.

(b) What do you think the domain and range of the function should be?

(c) What would be the resolving power of a 40 mm camera lens? 

(d) Using a 40 mm lens how many times would the image have to be magnified so that it 
was resolvable by the human eye?

2. In the last few sections of this module, you studied arithmetic and geometric sequences as 
examples of discrete functions. That is, functions which are only defined for discrete 
values of the domain. Another example of such a function is that of the energy levels of 
separate atoms. Niels Bohr in 1913 demonstrated that the Hydrogen atom when excited 
only emitted energy at certain discrete levels. The energy was found to be given by the 
function:

140
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,

where n is the energy level,  and  the energy (in electron volts) at the nth 
energy level.

(a) Calculate the energy emitted at the energy levels .

(b) The first two spectral lines in the Balmer series, correspond to the light given off when 
electrons move from the 3rd and 4th energy levels down to the second energy level. 
How much energy will be given off in each of these two cases?

3.5 Post-test

1. Determine whether the following relation is a function, and if so describe the type of 
function.

2. If  and  find the following:

(a)

(b)

3. Find the solutions of the following equation:

4. Sketch the graph:

2

13.6
nE

n
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5. Examine the behaviour of the function  by answering the following questions.

(a) Confirm that it is a rational function

(b) Find the vertical and horizontal intercepts.

(c) Determine any asymptotes

(d) Hand draw a sketch of the graph.

6. Using the knowledge developed in Q5, suggest a possible equation for the following 
function:

7. The amount of charge on a capacitor is known to decrease according to the following 

relation: , where Q is the amount of charge remaining after t seconds and  the 

initial charge. In a certain experiment, a capacitor with an initial charge of  

was allowed to discharge for 3 seconds, when its charge was then found to be .

(a) Determine the exact equation of the function.

(b) How much charge is remaining after 6 seconds?

8. What will be the sum of the first 20 terms of the following sequence:
12, 16, 20, . . .

9. A ball is dropped from a height of 12.8 m. If it bounces to  of its previous height on each 

bounce, through what total distance will it travel when it has hit the ground for the sixth 
time?

3
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Module C3 – Functions and relaions

3.8 Solutions

Solutions to activities

Activity 3.1

Relation
If function, 
what type?

Reason

A many-to-one 
function

For each value of t there is only one 
value of h, therefore it is a function. 
However it is possible that two 
values of t give the same value of h, 
e.g. t = –1 and t = 1. Therefore it is 
a many-to-one function.

Not a function. For each value of x there are nearly 
always two values of y. If we were 
to draw a vertical line on the graph 
it would cross the relation twice for 
x > 0.

(1,–2), (2,3), (3,0), (1,–4), (–2,3) Not a function. When the independent variable 
takes the value of 1 we see that the 
dependent variable can take two 
possible values, i.e. –2 and –4.

Telstra currently charges a 
network access fee of $11.65 each 
month and then $0.25 for each 
local call. What is the relation 
between the total monthly charge 
and the number of local calls made 
each month?

One-to-one 
function

For a given number of local calls 
there will be only one possible 
charge (note we are not considering 
STD and other calls). The opposite 
also applies, in that for any given 
charge it is possible to evaluate the 
exact number of local calls made.

(2,3), (5,1), (–1,3), (7,0), (–3,1) Many-to-one 
function

For each different value that the 
independent variable assumes there 
is only one possible value for the 
dependent variable. Therefore the 
relation is a function. However two 
values of the independent variable 
give a result of 3, so the function is 
a many-to-one function.

2 3h t "

x

y
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Activity 3.2

1.  (a) ‘The value of the function f at 12 is 3’.

(b) ‘The value of the function h at –2 is 12.75’.

2.  (a)

(b)

3.  (a) This expression will determine the strength of the magnetic field when there are twice 
as many turns of wire.

(b) This expression gives the strength of the magnetic field when we leave the original 
coil alone but add from an external source (for example a standard bar magnet) an 
extra two units of magnetic strength. 

4.  (a)

(b)

(c)

(d)

2

2

( ) 3 2

(0.5) 3 0.5 2

3 0.25 2

1.25

p t t

p

 "

 % "

 % "

 "

2

2

2

2

2

( ) 3 2

( 2) 3( 2) 2

3( 4 4) 2

3 12 12 2

3 12 10

p t t

p m m

m m

m m

m m

 "

!  ! "

 ! ! "

 ! ! "

 ! !

2

2

2

( ) ( ) (4 9) (2 3)

4 9 2 3

4 2 6

h m p m m m

m m

m m

"  " " "

 " " !

 " "

2

3 2

( ) ( ) (2 3)(4 9)

8 12 18 27

p m h m m m

m m m

%  " "

 " " !

2

( ) 2 3

( ) 4 9

(2 3)

(2 3)(2 3)

1

2 3

p m m

h m m

m

m m

m

"
 

"

"
 

" !

 
!

2

2

2

2

( ( )) (4 9)

2(4 9) 3

8 18 3

8 21

p h m p m

m

m

m

 "

 " "

 " "

 "



3.80 TPP7183 – Mathematics tertiary preparation level C

5.

Activity 3.3

1.  and  when .

2.  and  when .

3.  and  when .

Activity 3.4

Which of the following expressions represent polynomials and what is their degree?

Expression Is it a polynomial? Degree

1.  
No, as the last term can be written as 

 and all powers in a polynomial 
must be positive or zero.

Not applicable

2.  Yes, however, it would normally be 
written with the highest power first, 

i.e. 

5

3.  Yes. 4

4.  No, as the power of x is 0.5, which is 
not a whole number.

Not applicable

5.  
Yes. The expression can be simplified 
to one with no negative powers, i.e. 

1
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Activity 3.5

1. Firstly we need to consider how the function  behaves when .

Consider a large value for x, such as x = 10000,

 which is very large, therefore as .

Then we need to consider how the function behaves when 

Consider a small value for x, such as x = –10000,

, which is very small, therefore as .

2. Consider a large value for x, such as x = 10000,

Therefore as .

Consider a small value for x, such as x = –10000,

Therefore as .

3. Consider a large value for x, such as x = 10000,

 (in case you have forgotten, this is the same as –9996 with 

12 zeros after it) and it is a very small number.

Therefore as .

Consider a small value for x, such as x = –10000,

, which is also very small.

Therefore as .

4. Consider a large value for x, such as x = 10000,

 and this is a very small number.

Therefore as .

Consider a small value for x, such as x = –10000,

, which is a very large number.

Therefore as .

5. Consider a large value for x, such as x = 10000,

 and this is a very large number.

Therefore as .

Consider a small value for x, such as x = –10000,

, which is a very large number.

Therefore as .

Note: Graphmatica could be used to graph each function and to verify that each function 
behaves as we have predicted.
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Activity 3.6

1.  (a) This is a simple quadratic expression, hence:

(b) Instead of using the guess and check method in this question, you should observe that 
the common factor p is present in each term (we call p a common factor), therefore we 
now have a quadratic in the brackets to factorize:

(c) Before we find the factors, we need to find the solutions to the equation 

 and we would expect there to be at most 3 of these.

Possibilities would be: , so use trial and error:

Therefore we see the solutions are: .

The factors of the expression are: , so that 

(d) We need to find the solutions to the equation:  and we would 

expect that there be at most 3. Possibilities are: .

Therefore we see the solutions are: .

The factors of the expression are: 

(e) The common factor m is present in both terms, therefore we can factorize it out:

Possible solutions Value of function

1 –48
–1 0

5 0
–5 0
25 not worth doing as we have the 3 solutions

Possible solutions Value of function

1 0
–1 0

2 12
–2 0

2 7 12 ( 3)( 4)x x x x! !  ! !

3 2 27 12 ( 7 12)

( 3)( 4)

p p p p p p

p p p

! !  ! !

 ! !

3 2 25 25 0x x x! " "  

1, 5, 251 1 1

1, 5 and 5x x x "   "

( 1), ( 5), ( 5)x x x! " !
3 2 25 25 ( 1)( 5)( 5)x x x x x x! " "  ! " !

3 22 2 0a a a! " "  
1, 21 1

1, 1and 2a a a  "  "

( 1), ( 1), ( 2)a a a" ! !

3 24 ( 4)

( 2)( 2)

m m m m

m m m
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2.  (a) This is a quadratic so it is simpler to firstly factorize and then solve:

Therefore the solutions are: 

(b) Possible solutions for this equation are: , which is a lot 
to try, so we will start with the small ones and keep going until we get three solutions.

Therefore we see that the solutions are:  or writing these in order: 

(c) As the common factor 3m is present in all three terms it may be simpler to factorize the 
expression instead of using the longer ‘guess and check’ method used above.

Therefore the solutions are;  or writing these in order: .

(d) Possible solutions for this equation are: .

Therefore we see the solutions are: .

Possible solutions Value of function

1 –24
–1 –24

2 0
–2 –12

3 48
–3 0

5 240
–5 0

Possible solutions Value of function

1 8
–1 24

2 0
–2 20

3 0
–3 0

2 5 6 0

( 2)( 3) 0

x x

x x

! !  

! !  

3, 2.x x "  "

1, 2, 3, 5, 6, 10, 15, 301 1 1 1 1 1 1 1

2, 3, 5p  " "
5, 3,2.p  " "

3 2 23 15 18 3 ( 5 6)

3 ( 2)( 3)

m m m m m m

m m m

! !  ! !

 ! !

0, 2, 3m  " " 3, 2,0m  " "
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(e) Possible solutions for this equation are: .

Therefore solutions for this equation are: .

Activity 3.7

1.  (a) The graph of  is shown below:

(b) and (c) The graphs of  and  are shown below:

The vertical intercept for each function is the same as the constant term in its original 
equation. Consequently: (a) y = 0 (b) y = 1 (c) y = 2. 

In questions (a) and (b) the functions both approach infinity as  and . One 
way of getting a good feel for what happens to the function at its extremities is to ‘zoom 
out’ and look at it from a distance. Using Graphmatica this involves changing the domain 
to say  and the range to . From this distance you see the two 

Possible solutions Value of function

1 0
–1 0
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1, 7a  1 1
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functions look fairly similar. The third function approaches negative infinity as both 
 and .

Hopefully you will observe that the negative sign before the  term in question (c), has 
the effect of reflecting a normal quartic (one with a degree of 4) over the x-axis.

2.  (a)

(b) and (c)

The vertical intercepts of the functions are the constant terms in the original equations, 
consequently: (a) y = 0 (b) y = –1 (c) y = 2.

The first two functions both behave in a similar manner at their extremities, that is when 
,  and when , . You will see that if you use Graphmatica to 

‘zoom out’, both functions will look similar. In fact they will have a similar shape to the 
cubic functions discussed in your notes. All polynomial functions with an odd degree, for 
example 3,5 etc. will have this basic shape when they are viewed from a distance. The 
higher their degree, the steeper they will appear.

3. Since the polynomial function has an even degree, from a distance it will appear similar to 
a parabola, except with much steeper sides. The negative sign before the  term will 
mean that it extends downwards. Consequently the function will approach negative 
infinity as  and as . The constant term of –1 will mean that it intercepts the 
vertical axis at y = –1. Lets see what it actually looks like:
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4.  (a) We do not need to expand the function to know that if it were expanded, the highest 
power of x would be 4. Consequently the degree of the function will be 4.

(b) If we multiply the constants in each factor of the function we will obtain the constant 
term, i.e. . Consequently the function will cut the vertical axis at y = 2.

(c) To find the horizontal intercepts, substitute y = 0 into the equation and solve

therefore the horizontal intercepts will be: x = 2, x = –1 and x = 1 (recall that the 
function will just touch the x-axis at x = –1).

5. Keeping in mind the behaviour of the function at its extremities, plot the intercepts and 
then join these with a continuous line. The result from Graphmatica is:

6.  (a) We need to substitute t = 2 into the equation,
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(b) We would expect there to be at most 3 turning points, as the function has a degree of 4. 
We would expect that it would cut the vertical axis at 5.

(c) The graph is shown below. The domain has initially been set to  and the 
range .

We see that this is not suitable as it is unlikely that the temperatures would soar before 4 
am and after 4 pm. Therefore the function is only a suitable model for temperature 
fluctuation for the period when the temperatures were taken, i.e. between t = 0 and t = 14. 
Consequently the domain should be restricted further to .

(d) The temperature is rising between 0.3 and 7.3 hrs after 4 am. (It may rise again, but 
that is outside the domain and the model may not work then.)

(e) The temperature is falling between 7.3 hours and 14 hours.

Activity 3.8

1.  (a) Since t is the time since 1894, we substitute t = 0 into the equation,

Consequently the population in 1894 was approximately 3.2 million.

(b) Since t is the time since 1894, we substitute t = 2010 – 1894 = 116 into the equation,

Therefore we would expect that the population would be about 22.7 million in 2010.
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(c) We need to substitute P = 10 into the equation and solve,

Therefore the population of Australia should have reached 10 million in approximately 
1894+67, that is 1961.

(d) To determine how quickly the population was changing between 1954 and 1955, we 
could calculate average rate of change from 1954 to 1955.

In 1954, t = 1954 – 1894 = 60

In 1955, t = 61 and therefore 

Consequently the average rate of change in population is:

That is the population was changing at 0.15 million per year.

(e) The y-intercept indicated the population at the start of the period being studied i.e. 
1894.

2.  (a) We can’t find the actual growth, since we don’t know N0, but we can find the growth in 
terms of N0.

In 1999, 

In 2004, 
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Average rate of growth 

(b) We can do the same for the years 2004 and 2009

In 2004, 

In 2009, 

Average rate of growth 

(c) The average rate of growth for the five year period from 2004 to 2009 is about 2.5 

times the growth rate from 1999 to 2004. 

3.  (a) We need to substitute ,  and t = 1620 into the equation,

(b) We need to substitute , A = 1, k = 0.00043 into the equation and solve for t

change in height

change in horizontal distance
----------------------------------------------------------------------=

N0 1.26 75 N0–

5 0–
----------------------------------=

N0 1.26 75 1–6 7

5
-----------------------------------=

N0 1.488326 7

5
-------------------------------=

N0 0.297664%=

t 5  so  N5 N0 1.26 75= =

t 10  so  N5 N0 1.26 710= =

change in height

change in horizontal distance
----------------------------------------------------------------------=
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10 5–
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It would take approximately 5355 years for 10g of Radium to decay to 1g.

(c) We need to calculate the amount that remains after 5 years, then the amount after 
6 years and examine how much has decayed during the 5th year.

After 5 years the amount remaining would be:

After 6 years, the amount remaining would be:

Therefore the rate of decay during the 5th year would be approximately:

4.  (a) The table is shown below:

(b) The graph is shown below, drawn using Graphmatica.

Time (days) Number

0 50
1 100
2 200
3 400
4 800
5 1600
6 3200
7 6400

0
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(c) A function which would describe the situation would be:

Use the values in the table to check that it works. 

5.  (a) For this particular experiment the formula we will use is:

Therefore when the output voltage is 160 mV, we need to substitute  into the 
above equation:

(b) Assuming that any one of the voltages from 50 mV to 200 mV was obtainable in this 
experiment, we can graph the equation:

using Graphmatica, and setting the domain to: :
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Notice that when the output voltage is less than 50 mV, the gain is negative, that is the 
amplifier is not functioning correctly.

(c) To examine the rate at which the midband gain is changing at 100 mV, we need to look 
at the change in gain between say 100 mV and 105 mV.

when , 

when , 

therefore the average rate of change of gain at this point will be approximately:

Activity 3.9

1. The graph of  is shown below:

and the graph of  below:

You will notice that both functions have asymptotes at x = 0 and y = 0. The second 
function, however, occupies the second and fourth quadrants, instead of the first and 
third. It is a reflection of the first function about the line x = 0.
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2.  (a) The function  is shown below:

(b) In order to represent the situation described, the domain of  would need to be 

restricted to:  since we cannot have a negative or zero volume.

(c) From the above graph it can be seen that when . Consequently the 
pressure would become very small when the volume is increased.

3.  (a) Since the function can be written in the form  where both numerator and 

denominator are polynomial functions, the function is a rational function.

(b) To find the vertical intercept, substitute x = 0 into the equation, which yields y = 3. 
To find the horizontal intercept, substitute y = 0 into the equation and solve.

There is no solution to this equation, as multiplying both sides by (x + 1) yields the 
following:

0 = 3

Consequently there is no horizontal intercept.

(c) Vertical asymptotes occur whenever the function is not defined, this occurs when 
values of the domain result in division by zero. If we examine the denominator of the 
function, we see that is will result in zero when x = –1, consequently division by zero 
will occur when x = –1, and so a vertical asymptote exists on this line.

Horizontal asymptotes can be calculated by finding what happens to the function at its 
extremities, that is when . Using a calculator we find that when x becomes 
very large, the function becomes very small, that is when , . When x 
becomes very small, for example –1000 000, the value of the function becomes a small 
negative number, that is, when , . Consequently the line is a horizontal 
asymptote.
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(d) To draw a neat sketch, commence by plotting the vertical intercept (0,3). Then draw 
using an unbroken line the two asymptotes x = –1 and y = 0. Finally calculate and plot 
some points, using a table of values, for example:

The graph is shown below, using Graphmatica.

4.  (a) If we firstly rearrange the function, we obtain:

Both the numerator and denominator of the function are themselves polynomial 
functions, consequently it is a rational function.
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(b) To determine the vertical intercept, substitute x = 0 into the equation, therefore . 

To determine the horizontal intercept, substitute y = 0 into the equation and solve.

(c) To find the vertical asymptote, find for which values in the domain the function is 
undefined. From an inspection of the function, we see that when x = 3 division by zero 
occurs, so consequently an asymptote occurs on this line.

Horizontal asymptotes can be calculated by finding what happens to the function at its 
extremities, that is when . Using a calculator we find that when , 

 (that is the function gets close to 2, from the negative direction). Similarly 
when , . Therefore a horizontal asymptote occurs on the line y = 2.

(d) The function is shown below using Graphmatica.
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(b)

Consequently the current is decreasing more rapidly when we have small values of R 
then it does when R is larger.

(c) The function should be restricted to all positive values of R, that is .

(d) The function is shown below:

Activity 3.10

1. This forms an arithmetic sequence with a first term of 12 and a common difference of 3. 
Consequently , d = 3 and we need to calculate the 52nd term, .

2. Apart from the initial deposit, the deposits made by Aunt Beatrice form an arithmetic series 
with a first term of $100 and a common difference of $100. We need to find the sum of the 
first 21 terms of this series. Consequently , d = 100 and we need to calculate .

Therefore the total amount deposited by Aunt Beatrice will be $23150 (including the $50 
deposited on the actual day of birth).
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3. This an arithmetic series with a first term of 2, a common difference of 6 and we need to 
find .

4.  (a) If we consider the amount that is being worn from the bearing each hour we find that it 

forms an arithmetic sequence with first term  (note the symbol  is a 

micrometre, sometimes called a micron) and common difference . Consequently 

we need to find the 15th term of this sequence with  and d = 15.

If the pattern continued after the 15th hour of use an additional  will have been 
worn from the radius of the wheel bearing.

To reduce to one half its size we need to find when the sum of the above arithmetic 
series exceeds one half of the original 5 mm or rather .

Consequently: , d = 15 and  and we are trying to find n

This is a quadratic equation whose solution is facilitated by the use of the quadratic 
formula:
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Consequently after 18 hours the wheel bearing would have worn to over one half its 
original size (note that after 17 hours it would be still slightly over one half its original 
size).

5. The lengths of the rungs form an arithmetic sequence with first term 600 last term 400 and 
the sum of these terms 3500 mm.

Note the formula for the sum of the ‘n’ terms of an arithmetic sequence is: 

If we use this form of the equation then the solution is fairly straight forward , 
 and .

Therefore there should be 7 rungs in the ladder.

Activity 3.11

1.  (a) The ratio of consecutive terms in the sequence is always the same, namely:

(b) The sequence is a geometric sequence with first term  and common ratio
r = 0.2. We need to find the 10th term, .
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2. This is a geometric sequence with first term , common ratio r = 1.5 and we need to 
find the sum of the first 15 terms, .

3. The first option certainly sounds OK, but the second one should be explored. If we list the 
amounts paid after successive days employment, we see that they form a geometric 
sequence.

1c, 2c, 4c, 8c, 16c, . . . 

with first term  and common ratio r = 2. Consequently we need to calculate the 30th 
term of this sequence.

That is in the order of 5 million dollars, so the second option is the one that you would 
take.

4.  (a) After 6 days is actually the 7th of the geometric sequence.

Therefore there would be about 35000 bacteria present after 6 days.

(b) The first three numbers counted are the terms of a geometric sequence, with first term 
 and common ratio r = 1.1. We need to find for what value of n the term will 

exceed 40. So commence by letting .
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Therefore the 9th term of the sequence would be the first to exceed a value of 40, this 
represents a period of 8 days after the first observation.

5.  (a) The measurements taken are the first three terms of a geometric sequence with first 

term  and common ratio . We need to find the 20th term.

Consequently after the 20th swing the pendulum should reach 4.5 cm from its central 
position (incidentally the central position is also called its rest position).

(b) To find the size of the 200th swing, we need to find the 200th term of the above 
sequence.

Therefore the size of the 200th swing would not be observable to the naked eye.

(c) In theory the pendulum would continue to oscillate forever, however, in practice 
frictional forces vary according to the motion they are opposing, so these forces would 
of course completely stop the pendulum.
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Activity 3.12

1. This is a geometric sequence with first term  and common ratio r = 0.2.

2. The repeating decimal . This is in turn a 
geometric sequence with first term  and common ratio r = 0.1. 

The infinite sum is therefore:

(This is a nice little proof to convince people that ).

3. This series is formed from a geometric sequence with first term  and common ratio 

. The infinite sum is therefore:

4. For simplicity, we could assign an initial volume to the tank, say 10000 litres. The volumes 
remaining after 30 minute periods are shown below:

We see that these volumes form a geometric sequence with first term  and 
common ratio r = 0.5, consequently the nth term of this sequence will be the volume 
remaining after (n – 1) 30 minute periods.
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To find when the tank is one fiftieth full we need to find when the term reaches 200 (i.e. 
). Therefore:

Therefore the tank will be one fiftieth of its original volume after 7 terms, i.e. after six 
30 minute periods or 3 hours.

Since the expression which determines the volume, that is  is an 
exponential function, we know that it will possess asymptotic properties. As , 

. Consequently the tank will never completely empty.

5.  (a)

(b) We see that the heights above shock absorber form a geometric sequence with first 
term  and common ratio . The height of the nth bounce is the nth term of 
the sequence.

To find when it will reach 8 cm from its rest position, substitute  into the above 
equation.
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After the 10th bounce at well below 8 cm.

6.  (a) The completed table is shown below:

(b) The sizes of each swing form a geometric sequence with first term  and 
common ratio . The sum of the first 4 terms can be calculated as follows:

Therefore she will have travelled about 7 metres after the 4th swing.
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Solutions to a taste of things to come 

1.  (a)

(b) The domain would be , although physical restraint would place an upper limit on 
this.

Range would be , with similar physical restraints placing an upper limit on the 
range.

(c) In this case D = 40, therefore:

The resolving power is 3.5 seconds or 0.0583 degrees (recall that 3600 seconds make 
one degree).

(d) If the human eye can only resolve when the angle is 60 seconds then the magnification 
of a 40 mm lens must be between 17 and 18 times, because  and 

.

2.  (a) The first energy level, corresponding to n = 1 should be:

Other levels are below:
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(b) The difference in energy between the fourth and the second levels is:

Between the third and second levels, this energy difference would be:

These bursts of energy are given off in packets called quantums, which appear as light 
of different frequencies (i.e. colours).

Solutions to post-test 

1. The relation is a function as for each x-value there is only one corresponding y-value. 
However it is possible that two values of x give the same value of y, accordingly the 
function is a many-to-one function.

2.  (a)

(b)

3. Try solutions, which are factors of 15. We would expect to get at most three solutions. 
Possible solutions are . Using the guess and check method we obtain:

It is unnecessary to keep guessing after finding the three solutions. The solutions to the 
equation are x = –3, 1, 5.
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4. We would expect that the function  would have at most two turning 
points. Also since it has a degree of three, we would expect that as  and as 

. To sketch the function we should also try to determine the vertical and 
horizontal intercepts.

The vertical intercept will occur when x = 0 therefore we obtain y = 15.

The horizontal intercepts will occur when y = 0. So we need to substitute this value into 
the original equation and solve. This was done in question 3, therefore the three horizontal 
intercepts are x = 1, x = –3, x = 5.

The sketch is shown below:

5.  (a)

The RHS is now in the form of one polynomial divided by another polynomial, so is a 
rational function.

(b) The vertical intercept occurs when x = 0.

The horizontal intercept occurs when y = 0.
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(c) To find the vertical asymptote consider where the function is undefined i.e. when
x – 2 = 0. The vertical asymptote is the line x = 2.

To find the horizontal asymptote look at the function as x gets very large, as 
 and as . So y = 1 is the horizontal asymptote.

(d) A graph of the function  is below.

6. We should be able to recognize this as a rectangular hyperbola, so therefore the 
corresponding function must be a rational function. A closer examination of the graph 
shows us that there are two asymptotes, one at x = –1 and the other at y = –2. The graph 
also passes through the point (0, –1). Since there is an asymptote at x = –1 we can conclude 
that the denominator of the rational function may be of the form x + 1. Similarly the 
asymptote at y = –2 suggests that the function has a constant term of –2. One suitable 
equation may be:

(Note: this also satisfies the condition that the function passes through the point (0, –1))

7. We need to substitute ,  and t = 3 into the original equation 
and then solve for k.
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In order to find the amount of charge remaining after 6 seconds, we need to substitute t = 6 
into the equation: , that is:

8. This sequence is an arithmetic sequence with first term  and common difference
d = 4. We need to find the sum of the first twenty terms, that is .

9. The height of the first bounce will be 8m and the height of the second bounce will be 5m. 

When the ball first hits the ground it will have travelled 12.8m.

When it hits on the second occasion it will have travelled .

When it hits on the third occasion it will have travelled .

When it hits on the sixth occasion it will have travelled .

The expression in the bracket represents the sum of the first five terms of a geometric 

sequence with first term  and common ratio .
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Consequently when the ball hits on the sixth occasion is will have travelled a distance
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